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ŒNERAL INTBODOCnON 

Studies of vacuum ultraviolet (VUV) photochemical processes are 

inportant for understanding the kinetic and dynamic mechnisms in plasma 

physics, free radical chemistry, laser-assisted chemistry, and 

atmospheric chemistry.These studies have been greatly promoted due 

to the rapid development in the techniques of VUV light sources (e.g., 

synchrotron radiation, continuum VUV light source and pulsed VUV lasers) 

and molecular and cluster beams in recent years.^"5 

The first part of this thesis contains the unimolecular 

decomposition studies of small hydrocarbon clusters using the molecular 

beam photoionization mass spectrometry method. By combining the use of 

the Hopfield continuum and the hydrogen many-line pseudocontinuum, the 

continuous VUV light source covers the wavelength range of 600-2000 Â 

(~6-21 eV). The supersonic nozzle beam technique has been adopted to 

produce high intensty, cooled molecules in a collisionless condition. 

The product ions of photoionization and fragmentation processes are 

detected by a quadrupole mass spectrometer. 

In photoionization experiments one measures photoionization effi

ciency (PIE, ratio of the detected photoion intensity to the incident 

photon intensity) as a function of photon energy. The PIE curves pro

vide accurate determinations of molecular ionization energies and frag

ment appearance energies. The results lead to a better understanding of 

the kinetic and dynamic mechanisms in photochemical processes. 

The second part of this thesis describes the photofragment dynamics 

study of carbon disulfide by high resolution molecular beam 
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photofragment time-of-flight (TOP) mass spectrometry. The newly 

constructed apparatus consists of a pulsed single frequency ArF laser 

( 193 nm), a rotatable molecular beam generation system and a movable 

detection system. 

In the laser photofragment TOP experiments one measure flight times 

of product fragments following the photofragmentation processes. The 

TOP data taken in the laboratory are then converted to corresponding 

center-of-mass (c.m.) energy for meaningful interpretations. The 

studies not only provide accurate measurements of molecular bond 

dissociation energies but also yield valuable information on the energy 

partitioning among product fragments in photodissociation, the lifetimes 

and symmetry properties of the dissociative excited states, and the 

potential energy surfaces.1^-22 

Explanation of Thesis Fonnat 

This thesis contains two parts whose titles are clearly identified. 

Each of the three sections in Part l represents an independent article 

in the format of a publication. Part II concerning photofragment 

dynamics study also has three sections. Sections I and II are the 

theory of energy partitioning and description of experimental apparatus, 

respectively, whereas section III represents an independent article in a 

format ready to be submitted for publication with minor modifications. 

The figures, tables and references cited in each section refer only to 

those contained in that section. The references cited in the general 

introduction and general summary are listed in the reference section at 

the end of the thesis. 
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PART I. UNIMOLECULAR DECC»IPOSITION STUDIES OF SMALL 

HYDROCAEBm CLUSTERS BY MOLECULAR BEAM 

PHOTOIGNIZATIOT MASS SPECTROMETRY 

Introduction 

In principle, a -unimoleailar reaction v^ich involves the 

isomerization or decomposition of an isolated reactant molecule through 

1 n 
an activated conçlex is the simplest elementary reaction.However, 

more coitçlicated unimolecular reactions involving the formation of 

collision conçlexes are often observed in ion-molecule reactions. 

Studies of unimolecular deconçositions which involve the formation 

of collision coitçlexes have increased in numbers since Field, Franklin 

and Lançe described the ion-molecule reactions of ethylene and 

acetylene. ̂ ^ The direct observation of collision complexes can lead to 

an interpretation that the rate of the reaction is a combination of two 

factors; (1) the rate of formation of the collision conçlexes and (2) 

the fraction of these conçlexes which decomposes to products. This 

inplies that the collision coitplexes sinçly forget how they were formed, 

and fragment into products according to the available competing 

decomposition pathways. 

Since Becker et al.^ made the first measurements of the velocity 

distribution in nozzle beams to demonstrate the narrowed velocity 

distributions as predicted by Kantrowitz and Grey,® the molecular beams 

from nozzle sources have been widely used in molecular spectroscopy cind 

reaction dynamics studies."^'® However, the production of molecular 
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beams and cluster beams from nozzle sources are closely related so that 

a supersonic molecular beam apparatus can also be used to generate 

cluster beams by varying the nozzle conditions.^ 

Upon photoionization these van der waals clusters can undergo 

so-called "ion-molecule half-reactions.Photoionization of these 

clusters provides a "clean" way for directly preparing collision 

1 9 
complexes v^ich fragment through ion-molecule reaction channels. 

Observing the decomposition products of the collision complexes can give 

insight into the mechanisms of ion-molecule reactions, high Rydberg 

state chemistry, and mimolecular décompositions. 
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SECTION I. A STUDY OF THE UNIMOLECULAR DECCmPOSITION 

OF THE (C2H4)2* COMPLEX 

Abstract 

The energetics of the unimolecular reactions €2^^ > CgHg'*' 

+ CH3 and C^H-y'*' + H have been reinvestigated by the molecular beam 

photoionization method. At nozzle expansion conditions where the 

concentrations of (CgH^)^ and heavier clusters produced in the beam are 

high, the appearance energies (AE) for CgHg'"' and C^H^* were found to 

shift to energies lower than the expected thermochemical thresholds for 

the formation of C3H5"'" and C^H-y"*" from ethylene dimers. This indicates 

that ethylene trimers and heavier clusters can give rise to the same 

product ions as ethylene dimers. The AE's for CgH^'"' and C^H-y""" from 

(C2H4)2 measured in an ethylene beam, v^ich mainly consists of C2H4 and 

(C2H4)2, are 10.21+0.04 eV (1214+5 Â) and 10.05±0.04 eV (1234+5 Â), 

respectively. Taking into account the error estimates of the 

thermochemical thresholds for the formation of C^Hc;"'" and C^H-y"*" from 

(C2H4)2f the latter values are in accordance with the conclusion of 

previous studies that the barriers for the reverse reactions of the ion-

molecule reactions + C2H4 are negligible. From the observed 

ionization energies of (€28^)2 (9.84+0.04 eV) and C^H^ (10.505+0.004 eV) 

and the estimated binding energy of (C-^^)2 (0.02 eV), the bond 

dissociation energy for C2H4 is calculated to be 15.8+1 kcal/mol. 
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IntroducticHi 

The ion-molecule reactions of C2H^ have been studied 

extensively in the past.^"^® The major product ions observed for these 

reactions are C3H5+ and CjHy*. The results of previous investigations 

support the conclusion that the reactions proceed through long-lived 

conçlexes i.e., 

+ C2H^ *• > [C^Kg"*"] > CgHg""" -r CHg, (1) 

> C4H7+ + H. (2) 

The lifetime of the [C4Hg+]* complex was estimated to be 

- 2.9 X 10"7 sec.® Thus it can be readily stabilized by collisions in 

the gas cell. The study of the reactions C2H4+ with C2D4 in the energy 

range from thermal to a few eV by Tie man and Futrell^ shows that the 

€204* ions resulted from charge transfer consisting of ~ 30% of the 

product ions. It has been pointed out^^ that the loosely bound 

collision conplex C2H^ may be the precursor of the [C^Hg"*"]* 

complex. Ceyer et al.^^ have performed a photoionization study of 

(€28^)2 and obtained a value of 18.2+0.5 kcal/kol for the dissociation 

energy of C:2H4^»C2H4 from the measured ionization energy (IE) of 

(C2H4)2- In a recent theoretical study using the transition state 

switching model by Chesnavich et al.,33 it was shown that for thermal 

energy ethylene ion-molecule reaction, 36% of all collision pairs which 

reach the shallow well will back dissociate to C2H4+ + 

rather than proceed to the deep C^Hg"*" well. They suggested that the 
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relatively large probability for charge transfer is due to collision 

pairs •vdiich back dissociate from the loosely bound collision conçlex. 

Ceyer et al.^^ have also measured the appearance energies (AE) of 

C3H5+ and They found that the AE for was in agreement with 

the accepted thermochemical threshold for reaction (2), ̂ ereas the AE 

for C3H5''" was approximately 7.7 kcal/inol greater than the accepted 

thermodynamical threshold. This value was interpreted to be the 

magnitude of a barrier in the exit channel for the formation of 

As pointed out by Chesnavich et al.,^^ this interpretation is in 

conflict with AE's for obtained from electron inçact^^ and 

photoionization^^ of various C^Hg neutral isomers and the translational 

energy distribution for C2H5+ measured by Kençér and Bowers.^® 

Recently, in a photoionization study of {€2^2)2 aiid (C2H2)3, Ono 

and found that the AE for the formation of C4H4+ from (€2812)3 is 

lower than the IE of (€28^)2" Since both and (C2H2)2^ have the 

same mass, they showed that the IE of {02^2^2 ^ measured in an 

acetylene beam, %hich has negligible intensities of acetylene trimers 

and heavier clusters. In the previous photoionization experiment of 

Ceyer et al.̂  ̂the ratio of the intensities for (€23̂ )2+ and (C2Ĥ )2''' 

was approximately 0.34, indicating that the beam consisted of 

substantial intensities of ethylene trimer and heavier clusters. A 

study of the unimolecular deconçosition of (€2112)3 supports the 

interpretation that the (02112)3"'' ions rearrange to some common precursor 

ions, as do other stable CgHg"*" isomers prior to dissociation.if some 

(€28^)3+ ions formed by photoionization of (C2HA)3 also rearrange to 
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stable CgH^2^ precursors before fragmenting, one would anticipate C^Hg* 

and to be possible fragment ions from (02%)̂ "''. 

(̂ 2̂ 4)3 ((̂ 2̂ 4)3̂  + ®  ̂[CgHi2*]* + e" 

 ̂ 4̂̂ 8"'" 2̂̂ 4 •*• ® ' (3) 

> + C^Hg + e . ( 4 ) 

This speculation is based on the fact that both C^Hg* and were 

observed to be major product ions from the reactions of propylene ion 

with propylene, which are believed to proceed via long-lived collisional 

complexes [ CgH22'''] *. ̂ ' 39-43 stemming from the consideration that the 

thermochemcial thresholds for reactions (3) and (4) are lower than the 

corresponding thresholds from the values for the AE's for 

from (€28^)2 and the IE of (C2H4)2 reported previously might have been 

influenced by reactions (3) and (4). 

In this report we present an analysis and thé-result of a 

reinvestigation on the unimolecular decomposition of (C2H^)2^ prepared 

by photoionization of (€21^/^)2 i" supersonic ethylene beams. 

^^2®4^2 ) (^2^4^2^ ® ^ ^*-4%^^* + 6 

) + CHg + e , (5) 

> + K + e . (6) 
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The measurements were made in nozzle expansion conditions v^ich have 

minimized the formation of ethylene trimers and heavier clusters. The 

photoionization efficiency (PIE) curve for near the threshold, 

obtained with a higher wavelength resolution, is also examined here. 

Ea^ri mental 

The experimental arrangement and procedures were essentially the 

same as those described previously. Briefly, the apparatus 

consists of a 3-meter near-normal incidence vacuum ultraviolet (VUV) 

monochromator (McPherson 2253 M), a supersonic molecular beam production 

system, a capillary discharge lanç, a VUV light detector, and a 

quadrupole mass spectrometer for ion detection. The gratings enployed 

in this study are Bausch and Lomb 1200 lines/mm MgF2 or Os coated 

aluminum gratings blazed at 1360 Â. Either the hydrogen many-lined 

pseudocontinuum, the argon continuum, or the helium Hopfield continuum 

was used as the light source, depending on the wavelength region to be 

studied. 

The ethylene was obtained from Matheson with a quoted purity of > 

99.5 mole %. The C2H4 molecular beam was produced by supersonic 

expansion through a variable-temperature nozzle having a diameter of 120 

fm. Most of the data for ethylene dimers were obtained at a nozzle 

temperature (TQ) of ~ 210 K and a stagnation pressure (PQ) of 480 Torr. 

In a typical experiment, the fluctuation in the nozzle temperature was 

less than +3 K as monitored with thermocouples. Some of the data were 

obtained at room temperature (TQ ~ 298 K) and PG - 1000 Torr. Under 
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these expansion conditions, ions containing more than four carbon atoms 

were found to be negligible, indicating that C2H^ and were the 

major constituents of the molecular beam. Since the ethylene beam was 

sanpled in a collisionless environment, the observed fragment ions 

represent the primary fragments of and The PIE data for 

C2H4''" were obtained at Tq ~ 298 K and Pg ~ 500 Torr. 

With the exception of the high resolution PIE spectrum for 

near the ionization threshold, vmich was measured using a wavelength 

resolution of 0.14 À (FWHM), all the other PIE spectra were obtained 

with a wavelength resolution of 1.4 Â (FWHM). Data points were taken at 

0.05 Â intervals for the high resolution experiment and at either 0.5 or 

1 Â intervals for the low solution study. The standard deviations of 

the PIE data presented here are better than 10%. Each PIE spectrum was 

based on at least two scans, and prominent structures in the plotted 

data were found to be reproducible. Wavelength calibrations were 

achieved by using known atomic resonance lines or H2 emission lines'^® 

when the H2 pseudocontinuum was used. 

Results and Discussion 

The PIE spectrum for near the threshold (1150-1155 A) 

obtained using a wavelength resolution of 1.4 Â (FWHM) is shown in Fig. 

1(a). Three steps are clearly resolved at 1163.0, 1174.5, and 1180.5 Â, 

an observation in good agreement with previous studies. second 

and the third steps have been assigned to the thresholds for the 

excitations of two quanta of the twisting vibrational mode (\^) 
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Figure 1. PIE curves for in the region of 1160-1185 A. 
(a) PIE curve for C2H4+ in the region of 1160-1185 A 

obtained using the hydrogen many-lined pseudocontinuum 

as the light source (wavelength resolution » 1.4 A 
(FWHM),. PQ ~ 500 Torr, ~ 298 K). 

(b) PIE cuirve for €2^4* in the region of 1161-1182 A 
obtained using the argon continuum as the light source 

(wavelength resolution = 0.14 A (FWHM), P^ ~ 500 Torr, 
Tjj ~ 298 Kj. 
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and one quantum of the totally symmetric C-C stretching vibrational mode 

(V2) of C2H4+ respectively.first step, vd^ich 

corresponds to the ionization threshold of C2H4, is found to decrease 

rapidly from 1180 to 1181 k. In the region 1181-1183 k, a small hunp is 

discernable. Similar structure can also be found at the second and 

third steps. Because of the efficient rotational relaxation in a 

supersonic expansion, the rotational tençerature of is expected to 

be low. Furthermore, rotational excitations of are expected to 

give rise to a nearly exponential tailing structure below the threshold. 

Therefore, the hunç observed here cannot be conpletely due to rotational 

hot band effects. Since all the vibrational modes of have 

vibrational frequencies greater than 810 cm~^ (Ref. 51) according to a 

Boltzmann distribution, vibrationally excited C2H4 should constitute 

less than 4% of in this experiment. Stemming from the 

consideration that the energy span of the hunç (~ 145 cm~^) is 

substantially less than the vibrational frequencies of C2H4, the 

possibility that the hunç originates from a vibrational hot band can be 

excluded. Careful examination of the ionization thresholds of and 

reveals similar observations. It has been known that the 

electric field applied across the ion repeller in a photoionization 

experiment can lower the ionizing threshold.Recently in a 

multiphoton ionization study of high Sydberg states in NO, Seaver et 

al.56 pointed out that the prominent nf Rydberg states of NO are very 

long-lived and susceptible to ionization and that the nearly 50 on"̂  

difference between the ionization threshold observed in a 
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photoionization experiment using a supersonic beam of NO by Ono et al.^S 

and the IE of NO obtained by Miescher and Huber^^ is most likely due to 

field ionization. For polyatomic molecules such as C^H^, 

predissociation processes are usually very fast; hence, polyatomic 

molecules in high î^dberg states should be less susceptible to field 

ionization with the exception of Rydberg states with very high effective 

principal quantum numbers.^® In accordance with the above discussion it 

is logical to believe that the small hunç arises from field ionization 

of very high %dberg states converging to the IE of 

Figure 1(b) shows the PIE curve for in the region 1161-1182 Â 

obtained with a wavelength resolution of 0.14 Â (FWHM). No additional 

structure is resolved in the high resolution spectrum. Autoionization 

features appear to be broad and weak, indicating that the completing 

process of predissociation is much more probable than autoionization. 

Assuming that the wavelength spans (- 1.0 Â) of the rapidly rising steps 

were caused by a finite rotational tenpe rature of in the beam, the 

rotational temperature of is estimated to be - 50 K which seems to 

be a reasonable value for the nozzle expansion conditions used in this 

experiment. It is likely that field ionization also has a finite 

contribution at the rapidly rising steps. If the midpoint of the first 

rapidly rising step is taken to be the IE of the state of 

the value of 10.505+0.004 ev (1180.3+0.5 Â) is in agreement with values 

for the IE of determined previously by absorption study^®, 

photoelectron spectroscopy,^1-66 photoionization studies.^^"50,67-70 

The values for 2\)^ and >>2 were determined to be 433+35 and 1260+40 cm~^, 
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respectively, which are also consistent with previously reported 

measurements .47,48,61,63 

According to previous photoionization studies,*7-49,71 y^gre is no 

measurable excess activation energy for the process 

C2H4 + hv > ^2^2"*" ®2* (7) 

Using the known thermochemical data for and ^2^2^ (317.1+0.2 

kcal/mol),73 the the rmochemi cal threshold at 0 K for reaction (7) is 

calculated to be ûH^q = 302.5+0.2 kcal/mol. If the rotational 

tençerature of in the beam is higher than 0 K, one expects to find 

the AE for the formation of C2H2''" from to be lower than the 

thermochemical threshold. The PIE curve for C2H2* from C2H4 in the 

region 934-948 Â obtained using a wavelength resolution of 0.14 Â (FWHM) 

is shown in Fig. 2. The rise of the PIE curve for C2H2''" near the 

threshold is linear and a distinct onset is evidenced at 945.8+0.2 Â 

(302.29+0.06 kcal/mol). The excellent agreement found between the 

thermochemical threshold and the measured AE for C2H2''' indicates that 

the rotational tenperature of C2H4 in the beam is close to 0 K, a 

conclusion consistent with the estimate from the wavelength span of the 

rapidly rising step. 

The pressure dependence of the relative intensities for 

C/H-y"'", (028^)2^, (C2H^)and measured at 1160 A and Tg ~ 210 K 

is plotted in Fig. 3. The pressure dependence of the relative 

intensities for various ions measured here is in qualitative agreement 
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Figure 2. PIE curve for C2H2+ from C2H4 in the region of 933-948 A 
obtained using the helium Hopfield continuum as the 

the light source (wavelength resolution = 0.14 Â (FWHM), 

pQ ~ 500 Itorr, ~ 298 K]. 
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Figure 3. The pressure dependence of the relative intensities for 

C3HS+, C4H7+, (CgHalg+f (CzHj)]*, and (C2H4)4+ measured 

at 1160 A and ~ 210 K. 
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with that observed by Ceyer et al.^^ Since the formation of these ions 

depends on the photon energy, the difference observed between this 

measurement and that of Ceyer et al. is partly due to the fact that 

their measurement was made with the monochromator adjusted to zero 

order.The intensities for (0211^)3''' and higher ethylene cluster ions 
I 

are negligible at PQ < 10 psi. The appearance of seems to 

correlate with a more dramatic increase in intensity for (^2^^)2^ in the 

region ~ 11-14 psi. In the region ~ 3-11 psi, the intensities for 

CgHg*, C4H7+, and (C2H^)2^ are found to increase as PQ increases. This 

trend is in accord with the expectation that the and ions 

mainly arise from the decomposition of {02^^)2^ in this region. The 

intensity for shows a slight decline from ~ 11 psi toward higher 

stagnation pressures, Wiereas the intensity for continues to 

increase as the intensity for ( C2H^ ) g"*" begins to rise. These 

observations indicate that the C^Hg^ (and/or [02^^)2^) and ions 

can be produced by ethylene trimers possibly via reactions (3) and (4), 

respectively,- and that the process 

(^284)3 (^28^)3+ + e~ > [C6Hl2*]* + ®~ 

> + CgHj + e (8) 

is less probable than reactions (3) and (4). The more rapid rise in the 

ratio I()/I(CgHg"*") at higher stagnation pressures (> 11 psi) can be 

attributed to the increase in intensity for in the beam. Here 
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Table I. 298 K heats of formation in kcal/taol of neutrals and ions® 

Compounds Neutrals Ions 

42.90±0.15^'<=(72,75) 261.2+0.9^(76) 

(C2H4)2 24.66±0.1(72,75) 253.6+0.9^ 

28.74±0.1^(72,75) 

1-butene 221(34) 

Cis-2-butene 208(34) 

Cyclobutane 238(34) 

Isobutene 208(34) 

Methylcyclopropane 239(34) 

C4H7 206±2(34) 

C3H7 17.6(77) 

204.2+2® 

®The numbers in the parentheses are the references. 

^his value is calculated by assuming the binding energy for 

(^2^4)2 •** C2H4 to be the same as that for C2H4 + C2H4. 

%eat of formation at 0 K. 

^his work. Because of the high degree of rotational relaxation in 

the supersonic expansion, this value, vrtiich is deduced from the measured 

IE of (€254)2, can be considered to be the heat of formation at 0 K. 

®Heat of formation at 0 K. This value is converted from the heat 

of formation at 298 K by assuming an ideal-gas model and excluding any 

vibrational and electronic contributions to the heat capacity at 

constant pressure. 



www.manaraa.com

24 

Table I. (continued) 

CCHiçoundas Neutrals Ions 

n—CgH-y 

i-CsH? 

C3B5 

% 

% 

CH-

H 

22.6±1.1(78) 

21.1+1(79) 

20.0±1.1(78) 

18.2±1(79) 

25.7(77) 

28.3±1.1(78) 

25.9±1(79) 

12.54+0.07"= (72) 

14.58+0.07(72) 

34.8+0.2(72) 

35.1+0.5(78,79) 

35.62+0.2^(72) 

52.100+0.001(72) 

51.631+0.001^(72) 

226+2(34) 

224.5±1.0(80) 

225.5+1.1(81) 

226+1(82) 

223.7+1.5®'^ 

258C'd(73) 

-This value derives from the average value (255.5 kcal/mol) of the 

heats of formation reported in Refs. 34 and 80-82. See the text. 
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KC^H-y"*") and ^(CgHg'*') represent the intensities of and CgHg'"', 

respectively. By using the known values for the heats of formation of 

and C^Hg as listed in Table 

1,34,71-80 the formations of C4H8+ + C2K4, C4H7+ + C2K5, and C3H5+ + 

C3H7 from (€2114)3''' are predicted to be exothermic by - 33, 22, and 11 

kcal/taol, respectively. The lower exothermicity in the formation of 

C3H5* + CgH-y in comparison with those of the other channels is likely to 

be the reason for the lower reaction probability for reaction (8) than 

those for reactions (3) and (4). 

It is interesting to note that the ratio 

increases nearly linearly in the region 3-10 psi where the intensities 

for and higher ethylene cluster ions are negligible. Previous 

studies 33,83,84 g^ow that relative abundances of the three product 

channels €28:4^^ + C2H4, CgHg* + CH3, and + H are strong functions 

of both energy and angular momentum in the reactant C^Hg^ ions. 

According to Meisels et al.,®^ if the fragmentation of the reaction 

complex [C4Hg*j* is treated in the guasidiatomic approximation, and the 

attractive potential is governed entirely by the ion-induced dipole 

interaction, the maximum in the effective potential energy barrier 

(Vgff may) along the dissociative reaction coordinate is related to the 

reduced mass {(j) of the quasidiatomic complex, the total angular 

momentum (J), and the polarizability of the neutral fragment (a) by the 

relation V^ff In this case, a(H) = 0.667 P?, afCHg) = 

2.2 Â^, and fj associated with the CgHg'"' + CK3 channel are ~ 11 times 

that for the C4HJ+ + H channel- Thus, for H ejection is 



www.manaraa.com

26 

greater than that for Œ3 elimination, and the formation of CgHg"*" + CH3 

is predicted to be the favorable channel for higher J values. The model 

calculations of Chesnavich et al.^^ suggest that the 

intermediates with high J values react preferentially to the C3H5* + CH3 

channel because the rotational constant associated with the tight 

transition state in this channel is smaller than the one associated with 

the tight transition state in the + H channel. The difference in 

the rotational constants allows higher J systems to pass through the 

tight transition state in the CgHg* + CH3 channel than can pass through 

the tight transition state in the + H channel. Undoubtedly, if 

(*-2^4) 2^ is the precursor of the conçlex, the initial 

rotational angular momentum of (C2H^)2^ will contribute to the total 

angular momentum of [C^Kg"*"]*. The rotational tenç>erature for (C2H,j)2 

prepared in the supersonic expansion is likely to decrease as the 

stagnation pressure increases in the range of 3-10 psi. Since the 

rotational tengerature for (02^^)2^ formed by photoionization is 

essentially the same as 1^)21 expects that the reaction complex 

[C^Hg"*"]* formed at higher PQ will have a smaller total angular momentum 

than that of a reaction conçlex produced at lower PQ. Following the 

above discussion, the gradual rise in the ratio I ()/I (€311^''' ) in the 

range of 3-10 psi can be rationalized to be the result of a more 

efficient rotational cooling when a higher stagnation pressure is 

employed in the nozzle expansion. 

Although the intensities for ( C2H^ ) 3"*" and higher ethylene cluster 

ions are nearly unobservable at PQ < 10 psi, this by no means excludes 
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reactions (3), (4), and (8) as possible sources for (C2H^)2^ (and/or 

C4H7+, and CgHg'"'. Since the formation of CgHg"*", and C^Hg"*" 

from (C2H^)g"*" are all exothermic, it is reasonable to believe that the 

decompositions of the {C2H^)g'^ ions prepared at 1160 Â (10.7 eV) 

according to reactions (3), (4), and (8) are efficient and that the 

observed signals for C^Hg"^ (and/or (C2H^)2^) ' ̂4^7"*"' ^nd at PQ < 

10 psi still have minor contributions from the ethylene trimers. 

Figure 4 shows the variation of the branching ratio 

I ( )/I ( CgHg""") as a function of photon energy measured at PQ ~ 1000 

Torr and TQ ~ 198 K. The ratio I ( )/I ( CGHG"*" ) was found to decrease 

dramatically from a value of 1.6 at 1185 Â to 0.5 at 1160 Â and then 

gradually to 0.3 at 950 Â. The decreasing trend was also observed 

previously in the study of the ion-molecule reaction of 

induced by VUV photons.^ At low reactant internal and kinetic energies, 

the branching ratio measured in collisional experiments of C2H4+ + 

is about 0.10-0.12.^'^'®^ The branching ratio from different C^Hg"*" 

precursors determined in a state-selected phctoionization experiment 

with an internal energy of 2.57 eV with respect to the most stable C^Hg"*" 

isomer (2-butene or isobutene ion) is ~ 0.4.®^'®^ The difference 

between the branching ratio observed in collisional experiments and that 

measured from the stable isomer has been shown to be due to the 

angular momentum effect.An internal energy of 2.57 eV of C^Hg^, 

with respect to the most stable C^Hg"*" isomer, is equal to ~ 267.5 

kcal/mol in the total energy scale [AHg(2-C4Hg+ or iso-C^Hg^) plus 

internal energy]. The latter value corresponds to an energy slightly 
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Figure 4. The wavelength dependence of the ratio of the intensity 

for to that for CgHg* measured at ~ 1000 Torr and 

Tq ~ 298 K. I(C4H7+) and ItCgHs*) are the intensities for 

C4H7+ and respectively. 



www.manaraa.com

T 

0 L_ 

1200 

T T T 

o 20 psi room temp. 

C.HÎ('BH) 

1 

* * ' 

1100 0 1000 

A 



www.manaraa.com

30 

above the C2H^'*' + threshold. At 10.55 eV (1175 A), vriûch is 0.04 

eV above the threshold, the ratio I()/I(CgHg"*") from {02^1^)2^ is 

determined to be ~ 0.7. Since this is not a state-selected experiment, 

it is not appropriate to cosçare the branching ratio observed here with 

those measured by Hsieh et al.®® In a study of the bimolecular 

reactions induced at 1165 Â, Sieck and Ausloos^ obtained a 

value of 0.17 for I()/I(CgHg"*"). The value for the branching ratio 

at 1165 Â, estimated from Fig. 4, is ~ 0.55. This difference can also 

be attributed to lower angular momentum involved in the deconposition of 

than in the deconçosition of the coitçlex formed in the 

bimolecular reactions of C2H4"*' + C2H4. 

The thresholds for reactions (5) and (6) and the ionization process 

( ) 2 + hv > ( ) 2"*" + e ( 9 ) 

have been investigated with great care. Figures 5(a)-(f) compare the 

PIE curves for (0232)2''', and near the thresholds obtained 

at PQ ~ 480 Torr and TQ ~ 210 K to those measured at PQ - 1000 Torr and 

Tg ~ 210 K. At PQ ~ 480 Torr and TQ - 210 K, the observed intensity for 

(^2^4)3* is less than 0.5% of that for (€28^)2* at 1160 Â. If the 

measured intensities for (^234)3"^ and (02114)2^ directly reflect those of 

the corresponding neutrals, the threshold determined in Figs. 5(b), 

5(d), and 5(f), %vhich are based on the results of several repetitive 

scans, can be assigned to be the IE for (€234)2 and the AE's for 

and CgHg"*" from (C2H/)2, respectively. These thresholds have also been 
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Figure 5. PIE curves for C4HQ+, C4H7+, and C3H5+ near the 

threshold. 

(a) PIE curve for C^Hg^ near the threshold [wavelength 

resolution = 1.4 A (FWUM), Pg ~ 1000 TOrr, TQ ~ 210 Kj. 
(b) PIE curve for {€2^4)2^ near the threshold [wavelength 

resolution - 1.4 A (FWUM), Pg - 480 Torr, Tg ~ 210 Kj. 
(c) PIE curve for near the threshold (wavelength 

resolution - 1.4 A (FWHM), Pg ~ 1000 Torr, Tg ~ 210 Kj. 
(d) PIE curve for C4H7+ near the threshold [wavelength 

resolution » 1.4 A (FWHH), Pg ~ 400 Terr, Tg ~ 210 K]. 
(e) PIE curve for C3H5+ near the threshold (wavelength 

resolution - 1.4 A (FWim), Pg ~ 1000 Torr, Tg ~ 210 K). 
(f) PIE curve for near the threshold (wavelength 

resolution • 1.4 A (EVJHM), Pg - 480 Torr, Pg ~ 210 kJ. 
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measured at PQ ~ 1000 Torr and TQ ~ 298 K, \Aere the intensity for 

and hi^er ethylene cluster ions were found to be within the 

noise level. The values obtained are within the error limits of the 

thresholds determined in Figs. 5(b), 5(d), and 5(f). 

The IE of (C2H^)2 is determined to be 9.84+0.04 eV (1260+ 5 Â). 

This value is 0.12 eV higher than the value obtained by Ceyer et al.^^ 

The interaction potential of the ethylene dimer has been the subject of 

many theoretical calculations.^^-92 Depending on the geometry of the 

ethylene dimer, these calculations yield values for the well depth for 

the C2H4 + C2H4 interaction in the range ~ 0.2-12.1 kcal/mol. The 

average value for the dissociation energy of (C2H^)2 derived from second 

virial coefficient and viscosity measurements^^ is 0.42+0.03 kcal/mol. 

Using the latter value, the IE's of €2^^^ and (€28^)2, the dissociation 

energy for is calculated to be 15.8+1 kcal/mol. This value is 

substantially lower than the binding energy for C2H2''" + C2H2 (22.5+1 

kcal/mol) which has been determined previously in a similar 

experiment.^® Nevertheless, it is found to be in good agreement with a 

theoretical value of 16 kcal/mol obtained by Almlof et al. in an ab 

initio study. 

As shown in Figs. 5(d) and 5(f), the AE's for the formation of the 

and CgHg"'' are determined to be 10.047+ 0.041 eV (1234+5 Â) and 

10-213+0.042 eV (1214+5 Â), respectively. The AE for observed 

here is approximately 0.2 eV lower than the previously reported value, 

Wiereas that for is slightly higher than a value of 9.96 eV 

obtained by Ceyer et al.^^ According to known thermodynamical data (see 
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Table I ), the thennochemical thresholds for the formations of CgHg'"' and 

from (02814)2 at 298 K are estimated to be 10.22+0.07 and 

10.12+0.09 eV, respectively. The average value (225.5+1.5 kcal/mol) of 

the heats of formation for CgHg* reported in Refs. 34 and 80-82 has been 

used in the calculation. However, since the AE's for CgHg'"' and 

obtained here are close to the values at 0 K, it is more appropriate to 

compare the experimental values with the the rmochemi cal thresholds at 0 

K. The values for AHfQ(C2H5+) and AH^Q(C4H^'*') are not known. Assuming 

an ideal-gas model and excluding any vibrational and electronic 

contribution to the heat capacities, the values for AH^Q(C2Hg''') and 

ûH£q(H) are estimated to be 223.7+1.5 and 204.2+2 kcal/mol, 

respectively. The latter values, together with the known values for 

ûH£o(CH3), AH£q{(C2H4)2], and as listed in Table I, allow the 

calculation of the thermochemical thresholds for reactions (5) and (6) 

to be 10.00+0.07 and 9.85+0.09 eV, respectively. Taken into account the 

error estimates of the latter values and the experimental AE's, the 

the nnochemical thresholds at 0 K are still lower than the experimental 

values by approximately 0.1 eV. In view of the estimated nature for the 

values of aH^Q(CgHg*) and 65^0(04%^+) used in the calculation and a 

finite rotational tençerature for the beam employed in this 

experiment, we feel that it is satisfactory to conclude from the AE 

measurements for CgHg* and that the potential energy barriers for 

the reverse reactions of reactions (1) and (2) are negligible. This 

conclusion is also consistent with the previous interpretation that the 

reactions of C2H4+ + proceed through the loosely bound dimer C2H4* 
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C2H4 ions and then rearrange to long-lived conçlexes prior to 

dissociation. 

At the nozzle expansion conditions, PQ -1000 Torr and TQ ~ 210 K, 

the intensities of and are ~ 30% and 5% of (€28^)2^, 

respectively. Therefore, it is logical to assume that the [and/or 

(^284)2*], C^Hy'*', and ions observed in Figs. 5(a), 5(c), and 5(e) 

mostly originated from (C^Ha)^ and to a lesser extent from higher 

ethylene clusters. The most convincing evidence, which supports this 

assumption, is that the AE's for [9.65 eV (1285 Â) ] and [~ 

9.72 eV (1275 Â)] are lower than the corresponding thermochemical 

thresholds for and C3H5+ from ethylene dimers. The results and an 

analysis of a photoionization study of (€284)3 will be reported in a 

separate publication,"^® The rise in PIE for CgHg"*" from (C2H4)3 above 

the threshold, as shown in Fig. 5(e), is much more gradual than that for 

C^Hg* [Fig. 5(a)1 and C4H7+ [Fig. 5(d)]. This indicates that the 

reaction probability for reaction (8) is much lower than that for 

reactions (3) and (4) near the thresholds.- a conclusion in agreement 

with that deduced from the pressure dependence measurement (Fig. 3). 

The PIE curves for (€284)2^, CgHg^, C4H7+ from (€2814)2 in the 

region - 650-1275 Â, obtained at PQ ~ 480 Torr and Tg ~ 210 K, are shown 

in Figs. 6(b), 6(c), and 6(d), respectively. The PIE curve for C2H4+ 

obtained with the same wavelength resolution [1.4 Â (FWHM)J is shown in 

Fig. 6(a) for comparison. The PIE spectrum for C2H4+ in the region 600-

1185 Â recorded here is in excellent agreement with those reported 

previously.The general profiles for the PIE spectra for (€28^)2^, 
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Figure 6. PIE curves for €2^14*'t (^2^/1)2^» C3H5+, and in the 

region oiî 600-1265 A. 
(a) PIE curve for C2H4+ in the region of 600-1185 A 

(wavelength resolution - 1.4 A (FVIHM), PQ ~ 500 Torr, 
Tg ~ 298 k). 

(b) PIE (nirve for (C2H4)2^ in the region of 650-1265 A 
(wavelength resolution • 1,4 A (FWHM), PQ ~ 480 Torr, 
Tg ~ 210 kl. 

(c) PIE <nirve for C3H5* in the region of 650-1240 A 
(wavelength resolution • 1.4 A (FWHM), PQ ~ 480 Torr, 

TQ ~ 210 kj. 

(d) PIE <nirve for in the region of 650-1250 A 
(wavelength resolution « 1.4 A (EWHM), PQ ~ 480 Torr, 
TQ ~ 210 KJ. 
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and CgHg'"' are similar. In the region ~ 650-950 Â, the appearance 

of the spectrm for C2H4''" is markedly different from that for 

and CgHg"*". The formations of C2H2'*" and C2H2''' from have the 

AE's at 13.11 eV (945.8 À) and 13.22 eV (938 À),49,71 respectively. At 

a photon energy of 21.2 eV, the relative abundance ^2!!^''' : C2H2''':C2H2'^ was 

reported to be 100:137:76.^^ The relative yields for C2H^'''f C2Hg''', and 

C2H2 have not been measured in this experiment. However, when the PIE's 

for and C2H3+ observed by Botter et al.4? were added to the PIE 

for C2H4+ in this region, the profile of the summed PIE curve was found 

to be in rough resemblance to those for (C^H^)^^, and CgHg"*". 

Similar observations have also been found in other systems such as S02^^ 

and H2S.9S 

The relative abundances I[(C2H4)2*]/E, and l(CgHg''')/Z 

for and CgHg"*", respectively, in percentage, as a 

function of photon energy in the region of 950-1250 Â, are plotted in 

Fig. 7. Here, I[ (€28^)2*] represents the intensity for (C2H^)2''' and Z 

is the sum of I[(C2H^)2"^]and ifCgHc*). The relative 

abundance diagram is based on PIE data for various ions measured at PQ ~ 

1000 Torr and Tq ~ 298 K, at wavelength intervals of 25 À. The 

differences in transmission of these ions through the mass spectrometer 

used in this experiment have not been corrected for. As a result of a 

much shorter time span in obtaining these data, in coiiçarison to that 

needed for measurements of PIE data shown in Figs. 6(b)-6(d), the data 

plotted in Fig. 7 are believed to be less susceptible to minor 

experimental fluctuations and thus more representative of the relative 
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Figure 7. The variations of the relative abundances for (C2H4)2^10), 

and CgHg+tf) as a function of photon energy. 

E is the sum of KC^H^"^), and ItCgHs+l, where 

I((C2H4)2^], and 1(0]»^+) represent the 

intensities for (C2H4)2*, and C3H5+, respectively. 

No corrections were made to account for transmission 

factors of these ions through the mass spectrometer used In 

this experiment (wavelength resolution = 1.4 A (FWHM), 
PQ ~ 1000 Torr, Tg ~ 290 K]. 
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abundances of these ions. Despite the fact that the PIE data obtained 

here are not state-selected data and that the dissociation channel to 

form C2H4+ + C2H4 from cannot be probed in this experiment and 

thus is not included, the relative abundances of (€25^)2^, C4H7+, and 

C3H5+ as a function of photon energy are in qualitative agreement with 

breakdown curves observed for and C3H5+ from various 

precursor ions in a photoion-photoelectron coincidence study. ° The 

corresponding values between photon wavelengths and internal energies, 

with respect to the most stable C^Hg"*" isomer (Z-C^Hg* or iso-C^Hg*), are 

also shown in Fig. 7. 

In summary, the photoionization of (02114)2 has been investigated 

with higher sensitivity. The AE's for CgHg* and measured in 

nozzle expansion conditions, ̂ ich have minimized the formations of 

ethylene trimers and higher clusters, are found to be in fair agreement 

with the thermochemical thresholds for reactions (5) and (6), 

respectively. This and the qualitative agreement found in the relative 

abundances for and CnHg* observed here and those 

measured previously for C^Hg*, and from various C^Hg"*" 

isomers in a state-selected experiment can be taken as evidence that the 

major fragmentation pathway for (€28:4)2^ involves the rearrangement to 

some stable C^Hg"*" isomers prior to dissociation. 
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SECTION II. A STUDY OF THE UNIMOLECUIAR DECOMPOSITION 

OF THE (C2H4)3'^ COMPLEX 

Abstract 

The energetics and dissociation dynamics of the (€28:4)3^ complexes 

have been studied by photoionization of neutral van der Waals ethylene 

trimers. The major product channels identified in the unimolecular 

decomposition of in the total energy [neutral heat of 

formation plus excitation energy] range of ~ 260-336 kcal/mol are CgHg* 

+ CgHg, CgH-y"*" + CgHg, C^H-y"*" + C^Hg (or C2H4 + H), C^Hg* [or (^28^)2*] + 

C2H4, CgHg^ + CH3 and CgH^^"*" + H. The fact that these product channels 

are similar to those observed in the unimolecular deconpositions of 

(^386)2^ (c-C2Hg)2* is consistent with the interpretation that the 

(^284)3^' (C3Hg)2*, and (c-C2Hg)2^ loose complexes rearrange to similar 

stable CgH22* ions prior to fragmenting. The ionization energies (IE) 

of and are determined to be 9.465+0.036 eV (1310+5Â) and 

9,287+0,034 eV (1335+5 Â). respectively. Using the known IE's of 

(^2^4)0/ n = 2' 3, and 4, and the estimated binding energies of 

^^2"4^2*^2"4 '^2"4^3'^2"4' dissociation energies for 

(C2H4)2"*"'C2H4 and (C2H4)3"^.C2H4 are deduced to be 9.2+1 and 4.6+1 

kcal/mol, respectively. 

Introduction 

Recently, in a photoioni zation study of (C2H2)3, Ono and Ng^ have 

obtained experimental evidence which strongly favors the conclusion that 



www.manaraa.com

48 

the loosely bonded (C-^2^'^ ions rearrange to the same common precursors 

as do other stable CgHg"*" isomers prior to dissociation. Tzeng et al.^ 

have compared the major fragment ions resulting from the unimolecular 

deconçositions of (€38^)2* and (^-€3115)2''". Ihe C3H7+, C^Hg'^y and 

CgHg"*" are identified to be the major fragment ions from (€38^)2* and (c-

^3%^2"*"* variations of the relative abundances for C^Hg^, 

and CgHg"*" from (C3Hg)2* and (0-038^)2* in the total energy {neutral 

(C3Hg)2 [or (c-C3Hg)2] heat of formation plus excitation energy} range 

of ~ 230-450 kcal/mol are found to be in qualitative agreement, 

indicating that (C3Hg)2"'' and (c-C3Hg)2''" may rearrange to similar CgHi2* 

isomers before fragmenting. Since (C2H4)3 consists of the same numbers 

of carbon and hydrogen atoms, it is interesting to coirpare the major 

fragments from (C2H4)3+ with those from (€38^)2* and (0-038^)2*. If the 

decomposition of (€28^)3+ also involves the rearrangement to some stable 

^6^12^ isomers, we would expect to find C3Hg'*', C3H7+, C^Hg*, and 

CgHg* to be the prominent fragment ions from (028^)3^. This report 

presents the results of a careful search for product ions resulting from 

the unimolecular decomposition of (€28^)3^. A similar photoionization 

experiment^ had identified and CgH^i* to be two of the primary 

fragments of (€284)3*. 

Experimental 

The experimental arrangement and procedures were essentially the 

same as those described previously.Briefly, the apparatus consists 

of a 3 m near-normal incidence vacuum ultraviolet (VUV) monochromator 
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(McPherson 2253 M), a supersonic molecular beam production system, a 

capillary discharge lanp, a VUV light detector, and a quadrupole mass 

spectrometer for ion detection. The gratings enployed in this study are 

Bausch and Lomb 1200 lines/cm MgF2 or Os coated aluminum gratings blazed 

at 1360 Â. The hydrogen many-lined pseudocontinuum or the helium 

Hopfield continuum was used as the light source. 

The ethylene was obtained from Matheson with a quoted purity of > 

S9.5 inoi%. xne molecular beam was produced by supersonic expansion 

through a variable temperature nozzle having a diameter of 120 //m. Most 

of the data for the ethylene trimers were obtained at a nozzle 

temperature (TQ) of ~ 210 K and a stagnation pressure (PQ) of 750 Torr. 

Under these expansion conditions, the intensities of ions containing 

more than six carbon atoms were found to be negligible, indicating that 

C2H4, (€28^)2, and (€28^)3 were the major constituents of the molecular 

beam. Since the ethylene beam was sampled in a collisionless 

environment, the fragment ions observed represent the primary fragments 

of C2H4+, (CGHA)?*, and The photoionization efficiency (PIE) 

data for (C2H^)^''' were obtained at TQ - 210 K and PQ ~ 1000 Torr. The 

correlations of fragment ions to their parent ions are mostly based on 

photoionization mass spectra obtained at various nozzle expansion 

conditions. Similar methods were used previously to correlate fragment 

ions and parent ions observed in the photoionization of (€2112)3^ and 

(=284)2-6 

PIE spectra were obtained with a wavelength resolution of 1.4 Â 

(FWKM). Data points were taken at either 0.5 or 1 Â intervals. The 
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relative standard deviations of the PIE data were less than 10%. Each 

PIE spectrum was based on at least two scans and prominent structures in 

the plotted data were reproducible. Wavelength calibrations were 

achieved ky using known atomic resonance lines, or H2 emission lines 

\dien the H2 pseudocontinuum was used.^ 

Results and Discussion 

The relative intensities of the major fragment ions from 

(€28^)2^ and C2H4* observed using a photon energy of 10.64 eV (1165 Â) 

at Pq ~ 750 Torr and Tq ~ 210 K are listed in Table I. Minor ions 

including CgH^o"*"/ and C2H2^, which have the 

intensities less than 2% that of (€2114)3''' have not been listed. The 

intensity for C^Hg"*" or (€2^/^)2^ is arbitrarily normalized to 1.000. 

Under these experimental conditions, is the only observable ion 

with more than six carbons. The intensity of (€28^)4+ is less than 4% 

that of (CgH^)]*. Attempts were made to further reduce the intensity of 

(C2H^)/''' by lowering the Pf, and/or rising Tg. We found that these 

changes also significantly lowered the intensities of and its 

fragment ions, making it difficult to measure the PIE spectra for the Cg 

and Cg ions. Assuming the intensity of (C2H4)4* to be a direct measure 

of (€28^)4 in the ethylene beam, the contributions from fragments of 

to the Cg and Cg ions observed here should be negligibly small. 

In a previous photoionization experiment, Ono et al.^ showed that 

the C^Hg^ [and/or and C3H5+ ion can be produced by the 

photoionization of well as and higher ethylene 

clusters. The appearance energies (AE) for the processes 
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Table I. Relative intensities of major fragment ions from (C2H^) 

and (028^)2* observed using a photon wavelength of 1155 Â 

at Pq ~ 750 Torr and Tq ~ 210 K 

a,b 
Ions Relative Intensities 

(€2^4)3+ 0.093 

CgHii+ 0.021 

CgHg^ 0.112 

C4Hg+ [or (0284)2+] 1.000 

C4H7+ 0.135 

0.023 

C3H5+ 0.051 

C3H5+ 0.059 

C\H/+ 18.6 

®No corrections were made to account for transmission factors of 

these ions through the quadrupole mass spectrometer. 

^he intensity for (02^^)2^ or C^Hg^ is arbitrarily normalized to 

1.000. 
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(€28^)2 + hv ) (C2H^)2^ + ® (1) 

+ H + e ( 2 )  

CgHg^ + CHg + e (3) 

were determined to be 9.84+0.04 (1260+5 Â), 10.05+0.04 (1234+5 Â), and 

10.20+0.04 eV (1214+5 Â), respectively. The intensities for 

^5%^' CsH?"'", and were found to be negligibly small vdien beam 

expansion conditions did not favor the formation of ethylene trimers. 

This finding shows that the C^Hg^, ^3^7"*"» and CgHg^ ions 

observed here arise mainly from the imimoleculax decomposition of 

The possible reactions which can give rise to these ions are 

(C2H4)3 (€254)3+ + e- ±=^ [C6H12+]* + e-

(4) 

CgHg+ + CHg + e (5) 

+ C2H4 + e ( 6 )  

^ + C2Hg + e (7) 

+ C2H4 + H + e ( 8 )  



www.manaraa.com

53 

> C3H7+ + C3H5 + e" (9) 

> C3H5+ + C3H6 + e" (10) 

) + CgH^ + e (11) 

> + C^Hg + e . (12) 

Due to the overvrtielming intensity of formed by the direct 

photoionization of C2H4, reaction (12) could not be examined in this 

study. 

The PIE curves obtained for (€28^)3*, CgHg+, C^Hg"*", €3117'*', 

and in the region of 950-1325 k using a wavelength 

resolution of 1.4 Â (FWHM) at Pg ~ 750 Torr and Tq ~ 210 K, are depicted 

in Figs. l(a)-l(g). The and spectra shown in Figs. 1(d) and 

1(f) have contributions from both and (€28^)3. However, at 

photon energies lower than the AE's of reactions (1) and (2), the 

and ions should be solely formed by reactions (6) and (7). The 

profiles of all the PIE spectra are similar, confirming that these ions 

are product ions resulting from the photoionization of and/or 

(^2^4)2- "^he PIE curve for C3H5+, which also has a similar appearance, 

is not included in Fig. 1. 

The PIE curve for (€28^)3^ in the region of 650-1350 Â can be 

compared to the PIE spectra for and (€211^)4'^ in Figs. 2(a)-2(c). 

The profiles of these curves are also similar. Since the (€204)3^ 
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Figure 1. PIE curves for (C2H^)3^/ CgHg^, C^Hg^, 

and CgHii* in the region of 950-1325 Â. 

(a) PIE curve for (028^)3^ in the region of 950-1320 Â. 

(b) PIE curve for CgHg"*" in the region of 950-1310 Â. 

(c) PIE curve for CgHg"^ in the region of 950-1300 Â. 

(d) PIE curve for C^Hg* in the region of 950-1310 Â. 

(e) PIE curve for CgH-y"*" in the region of 950-1300 Â. 

(f) PIE curve for in the region of 950-1310 Â. 

(g) PIE curve for in the region of 950-1325 Â. 
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Figure 2. PIE curves for C2H4+, and in the region 

of 640-1350 A. 
( a )  PIE curve for C2H4+ in the region of 640-1185 A. 
(b) PIE curve for in the region of 640-1320 A. 
(c) PIE curve for in the region of 640-1350 A. 
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spectrum was measured at beam expansion conditions \^ich minimize the 

formation of higher ethylene clusters, the threshold of 9.465+0.036 eV 

(1310+5 Â) determined in Fig. 2(b) is the ionization energy (IE) of 

(02114)3. The PIE curve for was obtained at Pg ~ 1000 Torr and 

Tq ~ 210 K. The intensity of under these expansion conditions 

was approximately 35% that of The IE of (C^H^)^ was 

determined to be 9.287+0.034 eV (1335+5 Â). This value was found to be 

essentially unaffected by the beam expansion conditions and thus the 

distribution in concentration of higher ethylene clusters. The binding 

energies for (C2H4)2*C2H4 and (C2H4)3*C2H4 are not known. Here we 

assume the binding energies for [C2^^)2''^2^i and (C2H4)3«C2H4 to be the 

same as that for C2H4'C2H4 (0.42+0.03 kcal/mol)'.® Using this value and 

the IE's of {02^^)2'"^ (^284)3, and the dissociation energies 

for (€28:4)2*.C2H4 and (C2H4)3'''.C2H4 are calculated to be 9.2+1 and 4.6+1 

kcal/mol, respectively. These values are significantly lower than the 

dissociation energy for C2H4+.C2H4 (15.8+1 kcal/mol). 

In order to rationalize the observation of this study, a pseudo-

reaction-coordinate diagram (Fig. 3), illustrating the dissociation 

pathways and stabilities (or heats of formation) of intermediates and 

products, was constructed with the use of thermochemical data summarized 

in Table n.2,8-22 an ion or a neutral has more than one possible 

structure, the heat of formation of the most stable structure was used 

in calculating the stability of a product channel. The stabilities for 

(^3^6)2^ and (c-C3Hg)2* determined in a recent study are also shown in 

the figure. In the construction of the pseudo-reaction-coordinate 
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Figure 3. Psieudo-reacliion-coordinate diagram for the decompositions 

of {C2H4)3+, (CgHsIz*, and (c-C3H6)2+. 
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Table II. 298 K heats of formation in kcal/mol of neutrals and ions^ 

Compounds Neutrals Ions 

(C2H4)4 

([284)3 

([385)2 

(c-CgHeiz 

^-^6^12 

trans—3—CgHj^2 

Cyclohexane 

(CH3)2C = C(CH3)2 

CeHii(cyclohexyl) 

1,3-dimethylallyl 

CgHg(cyclopentyl) 

([2^4)2 

C4H3(cyclobutane) 

Methylcyclopropane 

I-C4H8 

Cis—2—C^Hg 

Trans—2—0^8^ 

IsO-C^Hg 

48.9+0.15 (8,9) 

35.34+0.15(8,9) 

9.16 (9,10) 

24.9 (9) 

24.66+0.1 (8,9) 

263.1+0.9b 

253.6iO.9b 

224.3 (2) 

246.5C (2) 

208 (11) 

193 (11) 

-198 (11) 

177 (11) 

185 (12) 

183.5 (13) 

197 (14) 

255.5±0.9 (7) 

238 (15) 

239 (15) 

221 (12) 

209 (12) 

208 (12) 

209 (12) 

^he numbers in the parentheses are the references. 

^This work. 

''This value is calculated assuming the binding energy for 

(c-C3Kg)2 to be the same as for {C3Hg)2. 
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Tcible II. (continued) 

Compoimds Neutrals Ions 

1-methylallyl 203.1+1.4 (16) 

2-methylallyl 212+1.6 (16) 

Cyclobutyl 225.1+1.1 (16) 

Allylcarbinyl 231.0+3 (16) 

C3H7 17.6 (17) -207 (11,12) 

n-CjH^ 22.6+1.1 (18) 

21.1+1 (19) 

i-CgHy 20.0±1.1 (18) -191 (11,12) 

18.2+1 (19) 

CgHg 4.88 (9) 229.4 (2) 

c-CjHg 12.74 (9) 237 (2) 

C3H5 38.4+1.7 (20) .. 226+2 (15) 

224.5+1.0 (20) 

225.5+1.1 (21) 

226+1 (22) 

C2H5 25.7 (17) 

28.3±1.1 (18) 

25.9+1 (19) 

C2H4 12.54+0.07 (9) 

CH3 34.8+0.2 (9) 

35.1+0.5 (18,19) 

H 52.100+0.001 (9) 
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diagram, we assumed that the loose (028^)3+, (CgHg)^^, and (c-CgHg)^^ 

conçlexes rearrange to stable CgH22* isomers before fragmenting. Among 

the stable CgHj_2'*' structures, ((23)20=0((313)2"'" is the most stable isomer 

while l-CgH22* is the least stable isomer. As shown in Fig. 3, the 

stabilities of products of reactions (4), (5), (6), (7), (9), (10), 

(11), and (12) are all significantly lower than the stability of 

(€28^)3^. The exit potential energy barrier between stable CgHj_2''' 

isomers and the products of these reactions cannot be probed 

unambiguously by the AE measurements of various fragment ions.^ 

Within the error limits of + 5 Â for the AE measurements, the AE's 

for CgHg"*", , and are essentially 

identical and have a value of 9.61+0.04 eV (1290+5 À). Similar to the 

observation in the AE measurement for (C^H^)^^, the AEs for these 

fragment ions as well as that for (€28^)3+ are unaffected by increasing 

PQ and/or lowering Tg. The AEs for these ions obtained at PQ ~ 1000 

Torr and TQ ~ 210 K differ less than 5 À in conçarison with values shown 

in Figs. l(a)-l{f). The difference of ~ 0.15 eV between the AEs of 

these fragment ions and the IE of (€211^)3 is interpreted to be the 

energy barrier for the rearrangement from to CgH22^. 

If the fragmentation of (C^H^)^^ involves the prior rearrangement 

of the loose complex to form a stable CgH^^g"*" structure, the dissociation 

process such as 

(C2H4)4 ̂  (C2H4)4- + e" [CgHig+l* + e" 

C6H12* +C2H4 + e' (13) 
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will have an AE lower than that of the process 

) ^^2"4'3^ G . (14) 

This conclusion is simply based on the fact that the heat of formation 

of CgHi2* is substantially lower than that for The 

fragmentation process 

+ h"v) > (^2^4^3^ ^2^4 ® (15) 

is expected to have an AE higher than the IE of (C^Hg)^. The 

observation that the lowering of the AEs of (C^H^)]* and other fragment 

ions from (028^)3 is small at high concentrations of (C^H^)^ and higher 

ethylene clusters in the beam can be rationalized on the basis that the 

rearrangements of (C^H^)^* and higher ethylene cluster ions to the 

corresponding stable ion structures are inefficient. As the size of the 

loose cluster ion increases, the interactions between moieties of the 

cluster ion should be less effective. This interpretation seems 

reasonable. 

Another possible explanation for the negligible shifts observed in 

the AE's for (02(1^)3''' and fragment ions from at high 

concentrations of (C^H^)^ and higher ethylene clusters in the beam is 

due to the kinetic shift effects.^t has been demonstrated that 

the dissociation lifetimes for large polyatomic molecules can prevent 
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the measurement of the true AE of a dissociation channel to be 

measured.It is likely that the measured AE's of reaction (13) and 

similar fragmentation processes from ( C2H^ ) and higher ethylene 

cluster ions are limited by the kinetic shift effects. Due to the 

tailing ion intensities near thresholds and the kinetic shift effects, 

the AE's for fragment ions measured in this experiment should be 

considered as upper bounds. We believe the value of 9.72 (1276 Â) for 

the AE of reaction (11) reported previously is an upper limit. The very 

gradual rise in PIE of CgHg'"' near the threshold has made the measurement 

of the true AE of CgHg'*' difficult. 

The ionization photon of 1165 Â used to measure the relative 

fragment ion intensities (Table I) corresponds to a value of 280 

kcal/tol (12.18 eV) in the total energy scale. The previous photo-

ionization study^ of (C3Hg)2 and (c-C3Hg)2 shows that the relative 

intensities of CgHg"*", and from (03^1^)2'^ and (0-038^)2* are 

in the order I(C^Hg+) » I(CsHg+) > I(C4Hj+). Here I(C4Hg+), , 

and KC^K-y"'') are the intensities of C^Kg"^, CgEg"*", and 

respectively. The relative intensities of these ions listed in Table I 

are in the order ItC^Hg^) » l(C^H'y''') 2 I(CgHg^). As mentioned above, 

the ion observed in this study can be formed by the fragmentations 

of (C2H^)2^ and (^28^ )]'''. After correcting for the contribution from 

(^284)2*' intensity of arising from is expected to be 

smaller than that of CgHg^. 

Because of the extremely strong CgHg* and c-CjHg"*" background 

signals produced by the direct photoionization of CgHg and c-CgHg, the 
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formation of + CgHg channel from (C3Hg)2^ and (c-C2Hg)2'*' cannot be 

identified in the photoionization study of (C3Hg)2 and (c-C3Hg)2.^ The 

identification of CgHg* + CgHg as a major fragmentation channel from 

(^2*4)3* consistent with the dissociation mechanism shovm in reaction 

(10) .  

In siimmary, prominent fragment ions, C^Hg*, and CgHg* 

observed in the unimolecular decompositions of (€35^)2^ and (0-038^)2^ 

are identified as the major product ions resulting from the 

decomposition of (C2H4)3+. This observation is in accord with the 

interpretation that (€38^)2*, (0-038^)2^, and (028^)3+ rearrange to some 

common stable isomers prior to the formation of these fragment 

ions. The fact that the ion is found to be a fragment from 

(0284)3+ and (C-C3Hg)2''' but not (€32^)2*^^ indicates that the 

distributions of stable CgHi2* isomers involved in the decompositions of 

(^284)3*' (C3Hg)2*, and (c-C3Hg)2* are different. 
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SECTION III. A STUDY OF THE UNIMOLECULAR DECOMPOSITIONS 

OF TEÎE (C3Hg)2'^ and (c-C3Hg)2'^ COMPLEXES 

Abstract 

The major product channels identifies in the unimolecular 

decompositions of CgHg*. CgHg and c-CgHg'"'. c-CgHg in the total energy 

(neutral (C3Hg)2 or (0-038^)2 heat of formation plus excitation energy] 

range of ~ 230—450 kcal/rool are C^H-j"^ + CgHg, C^H-y' + C2Hg, C^Hg + 

C2H4, and CgHg"*" + CH3. The measured appearance energy for C^H^* 

(9.54+0.04 eV) from (035^)2 is equal to the thermochemical threshold for 

the formation of C^H^^ + C2H5 from (€38^)2, indicating that the exit 

potential energy barrier for the ion-molecule reaction C3Hg'*' + C3Hg > 

C^Hy"*" + C2H5 is negligible. There is evidence that the formations of 

C^H-y"*" + C2H4 + H from (C3Hg)2''' and (0-038^)2* also proceed with high 

probabilities vrtien they energetically allowed. The variations of the 

relative abundances for C^Hg^, and CgHg"*" from (C3Hg)2^ and (c-

as a fijnction of ionizina ohoton enerov are in qualitative 

agreement, suggesting that (C3Hg)2'*' and (c-C3Hg)2"*" rearrange to similar 

^6^12"'" isomers prior to fragmentation. The fact that CgH^i^ is found to 

be a primary ion from the unimolecular decomposition of (0-038^)2^ but 

not ( C3Hg ) 2"*" supports the conclusion that the distribution of CgHj^2'^ 

collision conçlexes involved in the CgHg^ + C3Hg reactions is different 

from that in the cyclopropane ion-molecule reactions. Using the 

ionization energies (IE) of (038^)2 (9.33+0.04 eV) and (c-C3Hg)2 

(9.61+0.04 eV) determined in this study, the calculation of the bond 



www.manaraa.com

70 

dissociation energies for C3Hg"''«C3Hg and c-CjHg"'". c-CjHg gives 0.43 and 

0.14 eV, respectively. The measured IE of CgHg is 9.738+0.003 eV and 

that of c-CgHg is 9.721+0.011 eV. 

Introduction 

The propylene ion-molecule reactions 

C3Hg+ + CgHg ̂  [CgHi2+]* > CgH/ + C3H5 (1) 

> + C2H5 (2) 

> C^Hg» + C2H4 (3) 

> CgHg"*" + CH3 ( 4 ) 

have been subjected to detailed scrutiny by mass spectrometry in the 

past three decades.The common conclusion from these studies is 

that the primary reactions proceed through long-lived [CgHi2*]* complex 

ions. Due to the long lifetimes of the collisional complexes, the 

bimolecular formation of stable CgHi2* in propylene has been 

observed.Fragmentation patterns of CgHi2* prepared by electron 

ionization of some stable HgH22 isomers have been found to be in good 

correlation with the relative intensities of C^Hg"*", and CgHg"*" 

observed in the CgHg^ + C3Hg reactions.This observation suggests 

that the branching ratios for C^Hg*, and CgHg^ produced by 
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reactions (2), (3), and (4) are governed mainly by the unimolecular 

decomposition of the [CgH22^]* collisional conçlexes. 

The internal energy effect on the propylene ion-molecule reactions 

has been examined by preparing the ions by photoionization of C^Hg 

at 10 and 11.7 eV. The observed reduction in the total rate coefficient 

with increasing internal energy of can be partly attributed to a 

decrease in the lifetime of the collisional complex. Previous 

experiments^^ ,14,18 shown that vôien the kinetic or internal 

energies of CgHg* are increased, the fractional yields of and 

increase vAiile and CgHg"*" decrease. The tandem mass 

spectrometric experiment of Abramson and Futrell^® indicates that the 

production of CgHj* also proceeds through a long range process which is 

chemically distinct from those responsible for the formation of 

^4%"'"' ^5^9"*"' The long range process is believed to be 

favored vrfien the reactant ion is produced in high vibrational 

states or under conditions of high kinetic energy. 

Several mass spectrometric studies of the c-C%Hg+ + c-CgHg 

reactions^'ll'l^flS been made to compare with the results of 

reactions (l)-(4). The internal and kinetic energy effects on the 

formation of and are found to be similar to 

those observed in the propylene ion-molecule reactions. 

In this report we present the results and an analysis of the 

unimolecular decompositions of and (c-C3Hg)2* which had been 

prepared by photoionization of (CgHglg and (c-C2Hg)2 formed in 

supersonic beams. 
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(^385)2 (^3^5)2^ + ®~ ^ [C6H12*]* + e 

> C^Hy* + C^Hg + e {5) 

> + C2H^ + H + e (6) 

> C^Hg^ + C2H^ + e (7) 

> CgHg^ + CHg + e , (8) 

(c-C3Hg)2 (c-C3Hg)2* + e~ > [CgH22'^] + e 

> + C2Hg + e (9) 

" > + H + e (10) 

' " y + e (11) 

y CgHg^ + CHg + e . ( 12 ) 

Since the loose (C3Hg)2"^ and (c-CgHg)2^ complexes are the precursors of 

stable [CgK]_2'^]* conçlexes, the comparison of the mimolecular 

fragmentation of (C3Hg)2''' and (c-C3115)2''' this study provides 

additional insight into the conçlex mechanisms of the + CgHg and 

c-CgHg^ + c-CgHg reactions which cannot be obtained by other means. 
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Similar studies on the unimolecular decompositions of (€28^)2*,^^'20 

(C2H2)2^\^^ and have been reported. Higher resolution 

photoionization efficiency (PIE) curves for CgHg^ and c-CjHg"*" near the 

thresholds are also examined. 

Ekperimental 

The experimental arrangement and procedures were essentially the 

same as those described previously.Briefly, the apparatus 

consists of a 3 m near-normal incidence vacuum ultraviolet (VUV) 

monochromator (McPherson 2253 M), a supersonic molecular beam production 

system, a capillary discharge lanp, a VUV light detector, and a 

quadrupole mass spectrometer for ion detection; The gratings employed 

in this study are Bausch and Lomb 1200 lines/mm MgF2 or Os coated 

aluminum gratings blazed at 1360 Â. The hydrogen many-lined 

pseudocontinuum, or the argon continuum, or the helium Hopfield 

continuum was used as the light source, depending on the wavelength 

region to be studied. 

The propylene and cyclopropane were obtained from Matheson with 

quoted purities of > 99.6% and > 99%, respectively, and were used 

without further purification. The CgHg or c-CjHg molecular beam was 

produced by supersonic expansion of pure CgHg or c-C^Hg through a 

variable tenperature nozzle having a diameter of 120 fm. Most of the 

data for propylene and cyclopropane dimers were obtained at a nozzle 

tenperature (Tg) of ~ 250 K and a stagnation pressure (PQ) of - 500 

Torr. In a typical experiment, the fluctuation in the nozzle 
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tenperature was less than + 3 K as monitored with thermocouples. The 

PIE data for and c-CjHg"*" were obtained at room tençerature (TQ ~ 

298 K) and Pg - 200 Torr. Under these expansion conditions, the 

intensities of ions containing more than six carbon atoms were found to 

be negligible, indicating that the C^Hg (c-CgHg) and (038^)2 [(c-C3Hg)2] 

were the major constituents of the molecular beam. Since the propylene 

and cyclopropane beams were sançled in a collisionless environment, the 

observed fragment ions are the primary fragments of CgHg^tc-CgHg^) and 

(C3H6)2"^[ (c-CgHg)2^1. 

With the exception of the high resolution PIE spectrum for CgHg"*" 

near the ionization threshold, which was measured using a wavelength 

resolution of 0.14 À (FWHM), all other PIE spectra were obtained with a 

wavelength resolution of 1.4 Â (FWHM). Data points were taken at 0.05 Â 

intervals for the high resolution experiment. The other low resolution 

PIE data were accumulated at either 0.5 or 1 Â intervals except for the 

PIE data in the region of ~ 650-1150 À for from (0-038^)2, which 

were taken at 5 Â inter/als. The relative standard deviations of the 

PIE data were less than 10%. Each PIE spectrum was based on at least 

two scans, and prominent structures in the plotted data were 

reproducible. Wavelength calibrations were achieved by using known 

atomic resonance lines or H2 emission lines^^ when the H2 

pseudocontinuum was used. 
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Results and Discussion 

Figure 1 shows the high resolution PIE spectrum for in the 

region of 1250-1276 Â. This spectrum resembles closely that for 

obtained with the same wavelength resolution. The ionization of CgHg to 

form CgHg* in the ground X^A" state results from the removal of an 

electron from the C=C n orbital. Based on arguments similar to those 

used in the assignment of the PIE spectrum for we take the 

midpoint of the first rapidly rising step to be the IE for the X~A" 

state of CgHg+. A value of 9.738+0.003 eV (1273.2+0.4 Â) determined 

here is in good agreement with values for the IE of CgHg deduced 

previously by photoionization,^®"^^ photoelectron 

spectroscopy,^^-38 absorption studies.32'39'40 decrease in this 

IE by 0.77 eV with respect to that of is attributable to the 

combined resonance and inductive effects through interactions between 

the C==C It orbital and the methyl group orbitals in 

The C==C stretching (vg), C—C twisting or torsional and 

C=C-C bending (vi_/) modes of C^Hg*' can be excited upon the removal of 

an electron from the C=C n orbital of CgHg. The vg, ^20' "^14 modes 

observed in CgHg are 1647, 578, and 417 cm~^, respectively.In the 

photoelectron study of Katrib and Rabalais,'® two progressions were 

found in the first photoelectron band of CgHg. The strong progression 

having an average spacing of 1340 cm~^ was assigned to the excitation of 

the vg mode, while the weak progression with a spacing of ~ 600 cm~^ was 

assigned to the ^24 of CgHg^. The second and third steps observed 

in Fig. 1 are 472+25 and 1260+32 cm"- above the IE for C3Hg"'"(X^A" ). 
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Figure 1. PIE curve for in the region of 1250-1276 A obtained 
using the argon continuum as the light source (wavelength 

resolution = 0.14 A (FWHM), Pq ~ 200 Torr, Tq ~ 298 K]. 
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The ejection of a bonding electron from the C=C n orbital necessarily 

weakens the C=C bond. The fact that the latter values are lower than 

V20 and Vg modes of CgHg favors the assignment of the second and third 

steps to V20 and vg of CgHg*, respectively. 

Due to the Jahn-Teller effect, the ionization cross sections near 

the ionization threshold of c-CgHg are expected to be very small. Since 

PIE curve for c-CgHg"*" exhibits a tailing structure near the threshold 

which makes it difficult to distinguish the hot band effect, previous 

photoionization experiments^®can provide only an upper limit of 

9.91 eV^® for the adiabatic IE of c-CgHg. The first band of the 

photoelectron spectrum of c-CgHg^^'^^ exhibits a long progression of 

peaks with an average spacing of ~ 480 cm~^ which has been assigned to 

the ring deformation mode of c-CgHg*. The PIE spectrum for c-CgHg^ 

obtained in the region of 1210-1285 Â using the supersonic molecular 

beam photoionization method is shown in Fig. 2. As a result of 

efficient rotational relaxation in the supersonic expansion, vibrational 

structure corresponding to the excitation of the of c-CgHg"^ is 

clearly evident. The average vibrational spacing (~ 434 cm~^) observed 

in Fig. 2 is slightly lower than the value of ~ 480 csT^ found in 

photoelectron experiments. The IE of c-CgHg is determined to be 

9.721+0.011 eV (1275.5±1.5 Â). This value is approximately 0.2 eV lower 

than the estimates obtained by previous photoionization and 

photoelectron studies. 

The PIE curves for CgHg^, C4H7+, C^Hg^, CgHg"^, and (CjHg)2^ in the 

region of ~ 650-1350 Â obtained with a wavelength resolution of 1.4 Â 
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Figure 2. PIE curve for c-CjHg"*" in the region of 1210-1285 Â obtained 

using the hydrogen many-lined pseudocontinuum as the light 

source [wavelength resolution = 1.4 Â(FVîHM), Pg - 200 Torr, 

Tq - 298 K]. 
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(FWHM) can be conçared in Fig. 3. Because the intensity of 

observed in this experiment is much lower than that of it 

is not possible to measure the PIE spectrum for CgHy"*" with accuracy. 

The PIE spectrum for CgHg* shown in Pig. 3(a) is in good agreement with 

those reported previously. 

The PIE spectrum for (C2Hg)2'^ is similar to that for CgHg*. The IE 

of (C3Hg)2 is determined to be 9.33+0.04 eV (1329+5 Â). Using this 

value, together with the estimated binding energy for C^Hg-C^Hg (0.026 

eV)^^ and the IE of CgHg, the bond dissociation energy for CgHg*.CgHg is 

calculated to be 0.43+0.05 eV. This value is substantially lower than 

the bond dissociation energy for C2H4 (0.69+0.04 eV).^® The lower 

bond dissociation energy observed for (CgHg)2''' can be rationalized as 

partly due to steric effects between the methyl group in CgHg* or CgHg 

with the other moiety of the dimer ion. The methyl groups in (€38^)2^ 

may prevent the optimum bonding interaction between CgHg* and CgHg. The 

previous molecular orbital calculation indicates that the C=«=C Ji bond in 

CgHg acquires some antibonding character through interaction with the 

methyl group orbitals. The conçarison of the bond dissociation energies 

for (02)2^, (NO)2''', (C0)2^f and (^2)2^ reveals that the bond 

dissociation energy of a dimer ion decreases dramatically as the number 

of antibonding electrons in the diatom increases.^® A lower bond 

dissociation for (€38^)2* in comparison to that for (€28^)2^ is 

consistent with that observation. 

In order to visualize the observation of this study, a pseudo-

reaction-coordinate diagram (Fig. 4) showing the stabilities (or heats 
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Figure 3. PIE curves for , C^Hg^, CgHg^, and (C^Hg )2^ 

in the region of 650-1350 Â. 

(a) PIE curve for CgHg"^ in the region of 650-1280 Â 

[wavelength resolution = 1.4 Â (FWHM), PQ - 200 Torr, 

Tq ~ .298 K]. 

(b) PIE curve for in the region of 650-1325 Â 

[wavelength resolution = 1.4 Â (FWHK), PQ ~ 500 Torr, 

Tq - 250 K]. 

(c) PIE curve for C^HG"*" in the region of 650-1320 Â 

(wavelength resolution = 1.4 Â (FWHM), PQ - 500 Torr, 

TQ ~ 250 K]. 

(d) PIE curve for CgHg"*" in the region of 650-1320 Â 

[wavelength resolution » 1.4 Â (FWHM), PQ - 500 Torr, 

TQ - 250 K]. 

(e) PIE curve for {C3Hg)2"'" in the region of 650-1350 A 
[wavelength resolution « 1.4 A (FWHM), PQ ~ 500 Torr, 
Tq - 250 Kl. 
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Figure 4. Pseudo-reaction-coordinate diagram for the decompositions 

of and (c-CgHg)2^" 
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of formation) of various dissociation channels is constructed with use 

of the thennochemical data reported here and in the literature (see 

Table I).45/47-56 assumed that the dissociation of the loose 

(CgHg)2'*' [or(c-C2Hg)2'*'j cosçlex involves prior rearrangements to some 

stable CgH22* conplex ions. Based on the known values for the heats of 

formation of and C2Hg,54-56 ^he thennochemical 

threshold for reaction (5) is predicted to be 9.53+0.09 eV, In the 

calculation, the produced near the threshold is assumed to have 

the most stable 1-methylallyl cation structure. The appearance energy 

(AE) for C4H7+ from (C3Hg)2 is determined to be 9.54+0.04 eV (1300+5 Â), 

a value in excellent agreement with the predicted thennochemical 

threshold. This observation can be interpreted that the exit potential 

energy barrier^^ for reaction (2) or (5), located between stable CgH22* 

complexes and + C^Hg (Fig. 4), is negligible. 

Abramson and Futrell^^ have compared the distribution of 

and CgHg^ formed by reactions (2)-(4) with the low energy 

electron impact mass spectra of several stable isomers. They 

found good correlations between the fragment ion intensities from 2-

hexene as well as 3-hexene and the propylene ion-molecule reaction 

CO 

product distribution. In a solid phase radiolysis study of propylene 

under conditions where deactivation of conçlexes will freeze 

the ion in its initial configuration, a large number of CgH^2 isomers 

were observed with the major products being 1-hexene and 3-methyl-l-

pentene. 

A plausible mechanism^^ for the rearrangement of (C3Hg)2^ to 

various linear CgH2^2^ isomer is 
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Table I. 298 K heats of formation in kcal/taol of neutrals and ions® 

Compounds Neutrals Ions 

(23^6)2 

(c-C3Hg)2 

l(CgHi2) 

Trans—S—CgHj^2 

Cyclohexane 

(CH3)2C=C(CH3)2 

CgHii( cyclohexyl) 

1, B-Dimethylallyl 

1,1-Dimethylallyl 

CgHg(cyclopentyl) 

C4H3{cyclobutane) 

Methylcyclopropane 

9.16(45,47) 

24.9^(47) 

224.3b 

246.5b 

208(48) 

193(48) 

~ 198(48) 

177(48) 

185(50) 

- 183.5(50) 

184.9(50) 

194(49) 

238(52) 

239(52) 

^he numbers in the parentheses are the references. 

^This work. 

^This value is calculated by assuming the binding energy for 

(c-CgHg)2 to be the same as (C3Hg)2. 
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Table I. (continued) 

Conçounds Neutrals Ions 

Cis—2—C^Hg 

Tr ans—2—C^Hg 

ISO-C^Hg 

1-Methylallyl 

2-Methylallyl 

Cyclobutyl 

Allylcarbinyl 

C3H5 

C-C3H5 

% 

^2*4 

CH, 

H 

4,88(47) 

12.74(47) 

25.7(54) 

28,3+1.1(55) 

25.9+1(56) 

12.54+0.07(47) 

34.8+0.2(47) 

35.1+0.5(55,56) 

52.100+0.001(47) 

221(49) 

209(49) 

208(49) 

209(49) 

203.1+1.4(53) 

212±1.6(53) 

225.1+1.1(53) 

231.0+3(53) 

229.4b 

237b 
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H3C-CH-CH2-CH2-CH-Œ3 

(b) * 

^ > KJC—CK2"~CS—CK—CH2—CK2 

(c) 

> HjC—Qi CH—CH2~CH2~CH2 

(d) 

H2C-^^^-CH2"^2"®3'^3- (13) 

After making a C-C bond between CgHg'^ and CgHg by step (13a), the 

formations of the linear hexene ions by steps (13b)-(13d) only involve 

stepwise 1,2-hydrogen shift vAiich is expected to have a low activation 

barrier of ~ 6-12 kcal/mol.^^ At the total energy (neutral heat of 

formation plus excitation energy) range of interest here, the linear 

hexene ions should be interconvertable. The formation of C4H7+ (1-

methyallyl cation) most likely proceeds via the 2-hexene ion structure; 

HgC—CH CH—CH2~CH2~CHg 

HgC—CH——CH——CH2 * * * CH2—CHg 

(14) 
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Due to the stabilization of the allyl cationlike structure, reaction 

(14) should be a favorable dissociation pathway. According to previous 

studies,the reverse of process (14), is expected to have 

negligible activation energy. The experinsental observation is 

consistent with this expectation. 

One of the pathways for the formation of is the elimination 

of CHg from 3-hexene. However, the 1-ethylallyl cation resulting is not 

the most stable CgHg* ion. Other intermediate ions can be 

produced by forming a C-C bond between nonequivalent carbon atoms in 

CgHg^ and CgHg: 

H 

(CsHgiz* H3C-ÏH-CH2-C CH2 

CH3 

(b) + 

^=9 H3C-CH2-CH^^(CH3)2 

(c) ^ H 

^ > H-aC—CH CH—C - CH-a 

I 
CH, 

^=5 etc. (15) 
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Again the interconversion of different structures by processes such as 

(15b) and (15c) involves only hydrogen shifts. The formations of the 

more stable CsHg+ isomers, 1,3-dimethylallyl and 1,1-dimethylallyl 

cations, can result from the processes 

HjC—CH2 CH—C(CHj)2 

H3C • • • CH^ ) 3 ' 2  

+ 

CH, :(aî3)2 + CH3 (16)  

and 

+ 
-A. 

H7C-CH CH CH---CH-

CH-

^HgC—CH CH- -CH—CHj + CH, (17) 
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The isotopic study of the propylene ion-molecule reactions by Abramson 

and Futrell^^ also suggests the involvement of the symmetric collisional 

conçlex, 

«3^^ m 

CH-CH 

+/ \ 
H2C CH2 

This radicalion can give rise to CgHg* with the 1,1-dimethylally cation 

structure via rearrangement processes similar to those described above. 

The AE for the formation of CgHg"*" from (€38^)2 is found to be 

9.50+0.04 eV (1305+5 Â). If the CgHg"*" ion is assumed to have the most 

stable 1,3-dimethylallyl cation structure, the predicted thermochemical 

threshold (9.08 eV) for reaction (8) is ~ 0.4 eV lower than the measured 

AE for CgHg"*". Since the heat of formation for (€38^)2^ (224.3 kcal/mol) 

is higher than the sum of the heats of formation for 1,3-dimethylallyl 

cation and CH3 (218.5 kcal/mol) this experiment cannot provide an 

unambiguous value for the exit potential energy barrier for reaction (4) 

or (8). Nevertheless, the AE for CgHg^ measured here gives an upper 

bound of 9.2 kcal/mol for the activation barrier for the reverse of 

reaction (8). As discussed above, if CgHg"^ ions are formed via 

processes (16) and (17) which are similar to process (14), the exit 

potential energy barrier for reaction (4) or (8) is also expected to be 

negligibly small. The difference (0.17+0.06 eV) between the AE for 

CgHg^ and the IE of (CgHg)2 is interpreted as the potential energy 

barrier for the rearrangement of (C3Hg)2* to stable CgH^2''' isomers fay 

processes such as (13a) and (15a). We note that the AE for CgHg"*" is in 
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agreement with the thermochemical threshold for reaction (8) if the 

CgHg"'" product ion has the cyclopentyl cation structure. Since there are 

no strong arguments \^ich exclude the formations of the 1,1-

diraethylallyl and 1,3-diiaethylallyl cations near the threshold, we 

believe the coincidence is fortuitous. 

Assuming that the ions formed near the threshold have the 

most stable trans-Z-C^Hg"*" structure, the thermochemical threshold for 

reaction (7) is calculated to be 9.17 eV. This value is lower than the 

AE of 9.46+0.04 eV (1310+5 Â) for C^Hg"*" from (C3Hg)2 measured in this 

experiment. The later value provides an upper limit of ~ 6 kcal/mol for 

the potential energy barrier for the reverse of reaction (7). Taking 

into account the error limits of both measurements, the AE for is 

equal to that for CgHg'"' from (C3Hg)2. Therefore, the AE for 

probably also reflects the potential energy barrier for the 

rearrangement from to stable isomers involved in the 

dissociation process. 

It can be seen from the PIE spectra for , C^Hg^, CgHg*, and 

(C3Hg)2^ [Figs. 3(b)-3(e)] that the relative intensities of these ions 

vary in the region of ~ 900-1350 Â. The relative abundances 

I[(C3Hg)2'^]/2, liCjHg+X/Z, and I(%+)/!: for (032^)2+, 

C^Hg*, and CgHg"'', respectively, in percentage, as a function of 

photon energy in the region of 650-1350 Â, are plotted in Fig. 5. Here 

I[(C3Hg)2*], , KC^Hg"*"), and KCgAg"*") represent the intensities 

of (C3Hg)2*, C4H7+, CaRg^, and CgKg"^, respectively. E is the sum of 

I[(035^)2^], KC^Hg*), and KC^Hg"*"). The relative abundance 
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E'igure 5. The variations of the relative abundances for (C3Hg)2* (+), 

C4Hg+ (0), (Ù), and (•) as a function of photon 

energy. E is the sum of I((C3Hg)2^J» KCgHg^), 

and I(C4H/), where IltCgHglg+l, I(C4H8+), KCsHg^), and 

represent the intensities for (CgHglg*, C4HQ+, 

CgHg"*", and CjHy+, respectively. No corrections were made 

to account for transmission factors of these ions through 

the mass spectrometer. 
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diagram is based on PIE data measured at Pq ~ 600 Torr, Tq ~ 250 K, and 

wavelength intervals of either 25 or 50 Â. No corrections have been 

made for the differences in transmission of these ions through the mass 

spectrometer. As a result of a much shorter time span used to obtain 

these data, in comparison to that needed to measure the PIE data shown 

in Figs. 4(b)-4(e), the data plotted in Fig. 5 are believed to be less 

susceptible to minor experimental fluctuations and thus to be more 

representative of the relative abundances of these ions. 

As a consequence of autoionization and direct ionization processes, 

the internal energy of (€38^)2* should increase as the excitation photon 

energy increases. Although the + C3H5 and the CgHg* + CgHg 

channels are excluded in this measurement,^^ the relative abundance plot 

shown in Fig. 5 still displays the important features anticipated in the 

unimolecular deconposition of (038^)2^. Similar to the observations in 

previous studies,the relative abundance of the parent dimer ion 

(^3^6)2* decreases dramatically ̂ ile those for and CgHg"*" 

increase after the onsets of C4H7+, C^Hg*, and CgHg"*". The relative 

abundances for C^Hg"*", and CgHg"*" observed in the region of ~ 1000-

1270 À are found to be in the order KC^Hg"*") > KCgHg"*") > in 

qualitative agreement with those found for the + CgHg reactions in 

a single chamber photoionization mass spectrometeric study induced with 

10.0 and 11.7 eV photons.^® The value for iCCgHg"*")/! remains nearly 

constant in the region of ~ 650-1200 Â. The relative abundance for 

is low at wavelengths longer than ~ 1100 Â. Accompanying the 

decreases of ItC^Hg+X/Z and l[ (C3Hg)2''']/2 , a substantial increase in 
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is found in the region of ~ 900-1100 Â. Since the 

thermochemical threshold of reaction (6) (11.27 eV) coincides with the 

onset (~ 1100 Â) of the further increase in the increase in 

relative abundance at wavelengths shorter than ~ 1100 Â is most likely 

due to the formation of + C2H4 + H and to the further 

deconçosition of into + H. 

The PIE data for (c—CgHg)2^f CgHg^, and from (c—CgHg)2 

in the region of 550-1300 A obtained at PQ ~ 500 Torr and TQ ~ 250 K are 

plotted in Fig. 6. The PIE curve for c-CgHg^, recorded using the same 

wavelength resolution of 1.4 Â (FWHM) at PQ ~ 200 Torr and TQ ~ 298 K, 

is shown in Fig. 6(a) for comparison. This c-CgHg"*" spectrum is in 

excellent agreement with that reported previously. 

The IE for (c-C^Hg)^^ is determined to be 9.61+0.04 eV (1290+5 Â). 

The binding energy for ( c-CgHg ) 2 is not known. Assuming the binding 

enrgy for (c-C3Hg)2 to be the same as that for (€38^)2 and using the 

IE's for c-CjHg and (0-0311^)2 determined here, we calculate the bond 

dissociation energy for (c-C3Hg)2''" to be 0.14 eV. This value is less 

than one third that for (C3Hg)2^. 

Taking into account the experimental uncertainties, the values for 

the AE's for CgHg^, C^Hg*, and C^Ky"*" are identical. The difference of -

0.09 eV between the AE's of these ions and the IE of {c-C3Hg)2 can be 

interpreted as the potential energy barrier for the rearrangement from 

(c-C3Hg)2"*" to stable CgH22'*" isomers (Fig. 4). 

The relative abundances for C^K-y"*", C^Kg"*", CgHg"*", and 

from (c-C3Hg)2 are plotted as a function of photon energy in Fig. 7. 
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Figure 6. PIE curves for c-CgHg'"', (c-CgHg)]*, Cglig"*", C^Hg*, 

and in the region of 650-1305 A. 

(a) PIE curve for c-CgHg* in the region of 650-1295 À 

[wavelength resolution = 1.4 k (FWHM), Pq ~ 200 Torr, 

Tg - 298 K]. 

(b) PIE curve for in the region of 650-1305 À 

[wavelength resolution = 1.4 Â (FWHM), Pg - 500 Torr, 

Tq - 250 K]. 

(c) PIE curve for in the region of 650-1295 Â 

[wavelength resolution = 1.4 Â (FWHM), PQ ~ too Torr, 

Tg - 250 K]. 

(d) PIE curve for in the region of 650-1290 Â 

[wavelength resolution = 1.4 A (FWHM), Pg - 500 Torr, 

Tq - 250 K]. 

(e) PIE curve for in the region of 650-1290 Â 

[wavelength resolution = 1.4 Â (FWHM), Pg ~ 500 Torr, 

TQ - 250 K]. 
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Figure 7. The variations of the relative abundances for (c-C3Hg)2^ 

(#), (+), (0), and (Û) as a function of 

photon energy. I is the sum of I( (c-C3Hg)2'*'1 » I(C4HQ+), 

I(CgHg)*, and where I[(c-CgHg)2^], 

ItCgHg*), and represent the intensities for 

(c-CgHglg*, C^Hg*, CgHg+f and C4H7+, respectively. No 

corrections were made to account for transmission factors 

of these ions through the mass spectrometer. 
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The variations of the relative abundances for C^Hg*, CgHg"*" from 

(c-C3Hg)2 are in qualitative agreement with those found in Fig. 5. The 

relative yield for C^Hg"*" from the unimolecular deconçosition of (c-

^385)2* shown in Fig. 7 is greater than that from {€3115)2'*'. Previous 

experiments also reveal that the relative intensity for produced 

in the ion-molecule reaction of c-CgHg'"' + c-CjHg is higher than that 

from reaction (7). The first step in the rearrangement of (0-038^)2* to 

form a CgH22* conçlex most likely involves the breaking of a C-C bond in 

the neutral partner. It has been pointed out^® that since the 

elimination of from the neutral can occur rapidly without extensive 

rearrangement, the relative abundance of C^Hg* from (c-C3Hg)2* is 

expected to be higher. The thermochemical threshold for reaction (10) 

is calculated to be 10.52 eV (1179 Â). As shown in Fig. 7, the 

correlation between the threshold for the formation of + C2H4 + H 

and the further rise of the relative abundance is less apparent than 

that observed in Fig. 5. 

The CgHn"*" ion has been identified as a prominent fragment ion from 

the unimolecular decomposition of (€2^4)3^.^^'^^ If (€284)3*, (€38^)2*, 

and (c-C3Hg)2* rearrange to some common stable CgH22* isomers prior to 

fragmenting, should be a primary fragment from both (CgHg)2"*" and 

(c-C3Hg)2*. A careful search for from (C3Hg)2 and (c-C3Hg)2 was 

made. Figures 8(a) and 8(b) display the mass spectra of (C3Hg)2 and (c-

^3%^2 t±ie mass/e range of ~ 82-85 obtained at 1050 Â, respectively. 

The photon energy used is well above the thermochemi cal thresholds for 

the formation of CgHj^^"*" from (€385^2 (c-C3Hg)2. Interestingly, 
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Figure 8. Mass sfxîctra of (a) (€3(15)2 and (b) (c-CgHg)2 in the 

mass range of 82-85 obtained using a photon wavelength 

of 1050 A. 
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is observed®^ in low abundance from (c-C3Hg)2''" but not at all 

from (C2Hg)2*. This observation supports the conclusion that the 

distribution of CgHi2* collision conçlexes involved in the CgHg* + CgHg 

reactions is different from that in the cyclopropane ion-molecule 

reactions. A previous experiment^® has provided evidence showing that 

cyclopropane molecular ions do not assume the propylene ion structure 

prior to reaction with other paraffins. 

Due to the tailing threshold intensities for fragment ions observed 

in this study and the kinetic shift effects,all AE's reported here 

should be viewed as upper bounds. Based on the observation that the 

measured AE for from (C3Hg)2 is in agreement with the 

thermochemical threshold of reaction (5), we believe the measured AE's 

are probably close to the true AE's. 

In summary we have obtained higher resolution PIE spectra for 

and c-CgHg* near the thresholds- The IE's of CgHg and c-C^Hg are 

determined to be 9.738+0.003 and 9.721+0.011 eV, respectively. Based on 

the measured lE's of (C3Hg)2 and (c-C3Hg)2, the bond dissociation 

energies for C3Hg"^*C3Hg and c-C3Hg+,c-C3Hg are estimated to be 0.43 and 

0.14 eV, respectively. The C3H-y'*', and CgHg*. ions are 

identified as primary fragments from the unimolecular deconpositions of 

^^3-6^2"'' (c-C^Hg*). The relative abundances for and 

CgHg+ from (C3Hg)2"*" and (c-C3Hg)2^ in the total energy range of ~ 230-

450 kcal/mol are found to be similar, indicating that (C3Hg)2* and (c-

^3-5)2* J^earrange to similar CgH22^ isomer ions prior to the formation 

of these product ions. However, the fact that CgH^^"*" is observed as a 
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primary fragment from (0-038^)2* but not (035^)2'"' shows that the 

distributions of stable CgHj_2"'' isomers resulting from the rearrangements 

of (C3Hg)2^ and (c-C3Hg)2''" are different. The measured AE for 

from (C3Hg)2 is consistent with the interpretation that the exit 

potential energy barrier for the CgHg* + CgHg > is 

negligible. The variations of the relative abundance for from 

( ̂3^6 ) 2^ ( c-CgHg ) 2"^ reveal that the formations of + H 

from (C3Hg)2* and (0-038^)2* proceed with high probabilities vrfien they 

are energetically allowed. 
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PART II. PHOTOFBAGMENT DYNAMICS STUDY OF CARBCM DISULFIDE 

BY HIOÎ RESOLUTICttî MOLECULAR BEAM LASER 

PH0T0FRAC3ÎENT TIME-OF-FLIGHT MASS SPECTROMETRY 

Introduction 

The study of photodissociation of small molecules is important for 

both practical and theoretical reasons.^ From practical point of view, 

knowledge of the dissociation products, and the energy distribution in 

those products, is necessary in order to understand any processes in 

vdiich the products may participate in successive collisions. Such 

information is useful in understanding and modeling diverse problems 

such as laser chemistry and the conçosition and kinetics of planetary 

atmospheres.^"^ On the other hand, from the theoretical viewpoint, the 

product state distribution is a sensitive probe of the electronic 

structure of the excited state as well as the dynamics of nuclear 

motion. With the development of theoretical models^ for treating the 

dynamics of photodissociation, it will become realistically possible to 

compare calculated distributions with measured ones and thus produce 

eitçirical potential energy surfaces for molecular excited states. 

Photodissociation is the result of the interaction of incident 

light (electromagnetic wave) with a molecule. Depending upon the energy 

transferred to the molecule, there are many types of photodissociation 

processes. In general, photodissociation processes may be classified 

into two categories; direct and indirect photodissociation. 
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If the excitation photon energy is large v^en conpared with the 

minimum energy needed to excite metastable vibronic levels of the 

molecule, direct dissociation processes will generally dominate. 

Therefore, %*en a molecule which has no quasibound levels in the energy 

region is excited by a high frequency photon, it dissociates directly 

into continuum states. Each of such continuum states may be specified 

by the electronic structure, the vibrational and rotational quantum 

numbers and the relative kinetic energy of the fragments. 

Indirect photodissociation involving two steps is a more 

complicated process. Upon photoabsorption a molecule may be excited to 

an intermediate (metastable) level \^ich is degenerate with a continuum 

level or many continua. The excited molecule in the metastable state 

will then undergo a radiationless transition process and dissociate into 

product fragments. This photodissociation phenomenon may occur due to 

interaction between the metastable and the continua belonging to 

different electronic states as well as through interconversion of 

vibrational to translational energy on a single potential energy 

surface. 

The indirect photodissociation processes of polyatomic molecules 

may be further classified:® (1) predissociation by electronic transition 

— where the dissociation continuum that causes radiationless 

decomposition belongs to another electronic state; the predissociation 

is accortçanied by a change in the potential energy surface, (2) 

predissociation by vibration — where the dissociation continuum belongs 

to the same electronic state but joins on to a lower dissociation limit; 
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the predissociation is a result of vibrational energy redistribution, 

and (3) predissociation by rotation — where the dissociation continuum 

belongs to the same electronic state and the same series of vibrational 

levels; the predissociation is caused by an energy transformation from 

rotational to vibrational motion. 

The process of photofragmentation can be viewed as a "half-

collision" event,-vAiere the system is prepared in a specific state or 

superposition of states by photoabsorption and is followed by the 

halfcollision event in which translational, vibrational and rotational 

energy transfer may occur. The photofragment spectroscopy yields 

information on final state distribution, excited state symmetries, 

product angular distributions and translational energy distributions. 

Since the suggestion of Kantrowitz and Grey^® in 1951, supersonic 

nozzle sources have been used to produce intense molecular beams with 

narrow velocity distribution (well defined translational energies) in a 

collisionless condition. With new high power UV lasers and highly 

sensitive ion detection devices, the time-of-flight (TOF) technique is a 

promising candidate for studying photofragmentation dynamics. 

Busch et al.^^ first constructed a photofragment spectrometer for 

studying the dynamics of molecular photofragmentation of simple 

polyatomic molecules.-^"-5 Dzvonic and Yang^® also built a similar 

continuous wave photofragment spectrometer for investigating 

photodissociative reactions of large aromatic polyatomics. A few years 

later, another TOF photofragment spectrometer was conçleted by Shinohara 

and co-workers^"^"^® for studies of the laser photofragmentation dynamics 
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of medium size organic molecules. In all these machines the laser 

propagation direction, molecular beam source direction and detector 

direction are mutually perpendicular to one another. The disadvantage 

of such design is that fragments recoiling slowly from a fast molecular 

beam will not enter the detector. To overcome this problem. Sparks et 

al.applied the idea of a rota table detector universal crossed beam 

machine^^ and constructed a laser photofragment spectrometer with 

rotatable detector. With all these previous designs in mind, a newer 

version of a molecular beam laser photofragment mass spectrometer with a 

rotatable beam source and a movable detector has been built for studying 

the photofragmentation dynamics of small polyatomic molecules. This 

machine not only has the improvements of the Sparks and Lee machine, but 

also has the advantage of changeable flight path for higher velocity 

analysis resolution. A rotating beam source TOP photofragmentation mass 

spectrometer with a similar design has been reported recently by Wodtke 

and Lee. 

As the first operational diagnostic of the new machine, a TOF 

chopper vdieel experiment has been performed using argon as a model gas 

for molecular beam characteristics studies. In addition, the initial 

velocity of the CS2 molecules in the laser photofragmsntation study has 

been measured with the same setup. 

Because of its high vapor pressure at normal conditions and its 

spectroscopic properties, (CS2) was chosen as the first model system for 

the laser photofragmentation dynamics study using this apparatus. The 

machine has demonstrated its two outstanding features of rotatable 
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molecular beam source and movable detector, and that these features are 

important for angular distribution experiments and for high resolution 

molecular beam laser photofragment TOF experiments. 
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SECTION I. THEORY 

The energy partitioning theory of photofragment TOF spectroscopy is 

relatively simple.Upon absorption of photons the parent molecules 

are excited to a dissociative excited state and then dissociate into 

fragments. The product fragments recoiling out of the scattering volume 

may have translational energy of recoil and internal energy in the form 

of electronic excitation. In addition, the molecular fragments may be 

rotationally and vibrationally excited.^'® 

By conservation of energy in the a.m. system, the total 

available energy to be partitioned between (the total c.m. 

translational energy of both fragments) and E^nt (the total internal 

energies of both fragments) can be expressed as 

^avl ~ ̂ trn ®int ~ ̂ ar + ~ 

in vAiich Ep^^ is the total internal energy of the parent molecule, hv is 

the energy of the absorbed photon, DQ° is the dissociation energy of the 

ground state parent molecule to ground state fragments (atoms or 

molecules). 

the total center-of-mass (c.m.) translational energy for both 

fragments, can be obtained from the flight time of one of the fragments 

through conservation of momentum by a transformation involving the 

flight path length 1, the initial velocity of the parent molecule u, and 

the fragment masses m^j^ and n^. (See Appendix D.) The total internal 

(electronic, vibrational, and rotational) energy of both recoiling 
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fragments, E^nt' be obtained by subtracting E^m ^avl' 

total available c.m. energy. 
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SECnm II. THE MOLECULAR BEAM LASER PHOTOFRAC34ENT 

TIME-OF-FLIGHT MASS SPECTROMETER 

Introduction and Design Considerations 

In the past thirty years since Taylor and Datz built the 

differential detection beam apparatus^ many molecular beam machines have 

been constructed for elastic, inelastic, or reactive scattering studies 

of chemical systems. They all fall into two categories: (1)rotatable 

source configuration,^"® and (2) rotatable detector configuration. 

Early rotatable source type machines, using effusive ovens attached to a 

single rotatable lid, suffered from a low beam intensity due to lack of 

extensive differential pumping in the beam generating system. However, 

the rotatable detector machines have fixed beam interaction angle of 90 

degrees and fixed distance between scattering center and detector. 

Therefore, for cross-beam experiments the change in relative velocity of 

the collisional partners must rely on heated and/or seeded beam^^ 

arrangements. After reviewing the designs of some rotatable detector 

type machines, Prest^^ pointed out the advantages and disadvantages of 

them and suggested that a rotatable beam source machine with a movable 

detector is a newer generation apparatus for crossed molecular beam 

experiments. 

The main goal for the design of this molecular beam laser 

photofragment time-of-flight (MB-LP-TOF) mass spectrometer is to utilize 

the idea of the rotatable beam source with a movable detector and recent 

advancement of high power vacuum ultraviolet laser. The machine is 
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designed to be as versatile as possible in order to be modified easily 

for more advanced experiments in the future. 

Beam source considerations 

The molecular beam source generation system must be able to produce 

an intensive supersonic beam and yet be rotatable for angle-related beam 

experiments. The angle of the molecular beam source can be set by 

invoking an executable command in the LASER MCS unit (Appendix A) or by 

manually rotating the beam source generation unit through a mechanical 

device. A mechanical drum dial is needed to serve as a redundant 

indicator of the beam source angle in case of operational failure of the 

multichannel scaler. 

The range of the beam source angles must be reasonably large for 

presently designed experiments and may be enlarged further by replacing 

the beam source top head for future experiments such as back scattering 

beam experiments. 

Detection system considerations 

The detection system is required to have high detection sensitivity 

to measure low signal levels of the desired experiments and to have 

movable capability to achieve high IQF resolution. These requirements 

are essential in order to minimize the noise level caused by background 

gas in the detector chamber and to be able to change flight path length 

according to desired experiments. 
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The detection system needs to be well aligned with the beam source 

system, so that the flight path length may be changed by sinçly 

replacing the intermediate tube which is placed between the detector 

chamber and the scattering chamber. The intermediate section between 

the detector chamber and the scattering chamber functions not only as a 

means for varying flight path length (by using stainless steel tubes and 

flexible bellows of various lengths), but also as an expansion port for 

more advanced and complicated experiments in the future. 

The newly constructed molecular beam laser photofragment time-of-

flight mass spectrometer (MB-LP-TOF) consists of the following major 

parts; (1) a sophisticated differentially pumped vacuum system, (2) a 

rotatable nozzle beam generation system, (3) an excimer laser, and (4) a 

movable detection system. Figure 1 and Figure 2 are the horizontal and 

vertical cross section views of this MB-LP-TOF machine. More than 200 

detailed original machine drawings^^ for inçortant components have been 

filed by number LIFTOF-XXX-NN into five groups classified as Assembly 

(ASM), Beam Source Chamber (BSC), Main Chamber (MCH), Detector Chamber 

(DET), and Miscellaneous (MIS). Only the essential parts of the machine 

will be described-

Differentially Pushed Vacuum System 

The sophisticated differentially pumped vacuum system, consisting 

of a source part and a detector part, utilizes extensive pumping 

capability. The source part generates a well-collimated, intensive, 

supersonic molecular beam and contains the photofragmentation reaction 
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Figure 1. Horizontal cross section view of the MB-LP-TOF machine. 

AF — adaptor flange. 

BC — nozzle discharge chamber. 

BT — liquid nitrogen beam catcher. 

DR — collimation chamber. 

EI — electron bombardment ionizer. 

FM — fragment molecules. 

GV — 8" gate valve. 

IC — ionization chamber. 

IL — ion exit lenses. 

LB — laser beam. 

LR — liquid nitrogen cold ring. 

MB — molecular beam axis. 

MC — scattering chamber. 

NZ — molecular beam nozzle. 

OF — quadrupole mass filter. 

RA — beam source rotational axis 

RV — scattering center. 

SH — rotational driving tubular shaft. 

TP — to turbomolecular pump. 
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Figure 2. Vertical cross section view of the MB-LP-TOF machine. 

BC — nozzle discharge chamber. 

BT — liquid nitrogen beam catcher. 

CP — to veeco ion pump. 

DB — dumbell i.on target. 

DC — ion detection chamber. 

DP — to 10" diffusion pump. 

DR — collimati.on chamber. 

EI — electron bombardment ionizer. 

FM — fragment molecules. 

FT — 33 kv electrical feedthrough. 

IC — ionization chamber. 

IL — ion exit lenses. 

IP — to ultek ion pump. 

LR — liquid nitrogen cold ring. 

m — molecular beam axis. 

MC — scattering chamber. 

NZ — molecular beam nozzle. 

PM — photomulliiplier holder. 

QF —- qucidrupole mass filter. 

RP —. beam source rotational baseplate. 

RV —. scattering center. 
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volume. It is a differentially punçed unit with three components: 

nozzle discharge chamber, collimation chamber, and scattering chamber. 

The detector part minimizes the partial pressure of background gas and 

achieves high detection efficiency. It is also a bakable differentially 

pumped unit. 

The nozzle discharge chamber houses a gas supply line, a supersonic 

beam nozzle, and a skimmer. This chamber collects the fraction of the 

nozzle flow which does not pass through the skimmer. A 20" oil 

diffusion punç (Varian model HS-20) with a rated ultimate punping speed 

of 17,500 1/s is used to evacuate the nozzle discharge chamber. In 

order to reduce backstreaming without reducing the punping speed 

greatly, a water-cooled Halo baffle^^ is enployed. This Halo baffle 

utilizes the standard cold cap of the diffusion pimp and an additional 

water-cooled chevron to intercept backstreaming gases emanating from the 

top nozzle. As a result, it eliminates 90% of the backstreaming not 

intercepted by the cold cap, and still retains 60% of the punçing speed. 

To match the throughput of the 20" diffussion pump and to achieve 

its maximum performance, a Stokes^^ model 150-4 4" Ring Jet Booster puitç 

together with a Leybold-Heraeus^^ model D60A Trivac two-stage rotary 

vane pump with a rated pumping speed of 36.7 CFM is used as the backing 

punç. During normal operation the pressure in the nozzle discharge 

chamber is maintained at < 1 x 10"^ Torr. 

The collimation chamber has a reasonably large flow conductance and 

a pressure about an order of magnitude lower than that of nozzle 

discharge chamber. It is pumped by a liquid nitrogen trapped 6" oil 
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diffusion puitç (Varian model VHS-6) through an aluminum gate valve. The 

pumping speed of this 6" diffusion punp system is estimated to be 950 

1/s. A Leybold-Heraeus model D30A Trivac two-stage rotary vane pump 

with a rated punçing speed of 26.8 CFM is used as the foreline backing 

punp for both the collimation and the scattering chambers. 

The scattering chamber is ̂ ere the molecular beam is 

perpendicularly crossed with the laser beam and v^ere the 

photofragmentation reaction takes place. A 10" oil diffusion pump with 

an accoitçanying gate valve and a Varian model 330 freon-cooled baffle^® 

attains an estimated pimçing speed of 1830 1/s and maintains a pressure 

of 10""^ Torr during normal operation. A liquid nitrogen cold ring and a 

cold beam catcher have been installed in this scattering chamber in 

order to lower the background pressure for condensable gases and thus 

reduce the attenuation of product fragments by the background gas. A 

pressure of 10~® Torr is easily maintained in this chamber during normal 

photofragmentation experiments. 

The first differentially punçed section in the bakable detector 

chamber is punçed by a Balzers""^ Model TPU 330 turbomolecular punp with 

a pumping speed of 330 1/s. A Varian Model HeS 2" diffusion punp backed 

by a Leybold-Keraeus DSA Trivac two-stage rotary vane pump maximizes the 

performance of the turboinol cular punp. 

A home-made turbomolecular punp control and a 6" electropneumatic 

swing gate valve^° are employed with the turbomolecular pump to protect 

the detector chamber in case of accidental vacuum failure. The 

electropneumatic gate valve will be closed and the turbomolecular punp 
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will be shut off if (1) the turbomolecular punç> is not running properly, 

e.g. not at full rotational speed, (2) there is not sufficient cooling 

water for the turbomolecular pump, or (3) the foreline pressure of the 

turbomolecular pump is too high. 

An aperture disc mount has been placed between first and second 

differentially punçed regions in the detector chamber. Since this 

aperture disc mount has a mechanical keyway, the replacement and 

alignment of aperture discs can be done easily. Using an aperture disc 

of 1/8" diameter, a pressure difference between these two regions is 

about an order of magnitude. The total pressure in this section is 

normally maintained at 10~® Torr. 

The quadrupole mass filter and Daly ion detection unit are located 

in the second differentially puitçed region of the detector chamber. A 

Cryo-Boostivac D-I combination punç (Ultek Model 224-0620) consisting of 

a differential ion pump and and a titanium sublimation punp with a 

puirçing speed of 150 1/s is used as trap for the straight through 

molecules from the scattering chamber. A turbomolecular punç (Balzers 

Model TFU 050) with a pumping speed of 50 1/s is also ençloyed in this 

section to keep the pressure at 10"^ Torr during normal operation. 

The innermost region of the detector chamber houses an electron 

bombardment ionizer and is pumped by a Veeco 100 1/s noble gas ion pump 

(Veeco Model PN-201) and a liquid nitrogen cold trap working as a 

cryogenic punç. The total pressure in this innermost region is 

maintained at 10"^® Torr or less during normal experiments. 
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Eotatable Supersonic Beam Source System 

One of the most important components in the rotatable supersonic 

beam generation system is the beam source top head whose cross section 

view is shown in Figure 3. The beam source top head (LIFTOF-BSC-05) 

houses the source nozzle, skimmer and collimator pieces and is mounted 

on the beam source inner chamber (LLFTOF-BSC-01) with an inner bearing 

retainer {LIFTOF-BSC-02), an outer bearing retainer (LIFTOF-BSC-03), and 

a top-inner bearing retainer (LIFTOF-BSC-04) through the "X" contact of 

a 16" I.D. Kaydon Reali-Slim type X ball bearing.A detailed cross 

section view of the bearing, its retaining conponents and the beam 

source top head for this rotational mechanism is shown in Figure 4. The 

seal which ensures a pressure difference between chambers in the static 

condition and no pressure change in each chamber during rotational 

motion of the beam source top head is a 16" I.D. x 3/16" wall O-ring.^® 

All bearing retaining pieces are precisely machined to give the 

best performance of the ball bearing and to eliminate problems that may 

be caused by inçroper use of the 0-ring. The edges of these machined 

pieces are chamfered for easier assembling. The rotational motion of 

the beam source top head is slow (about 1 degree/second) and a 3-5% 

compression 0-ring with good lubrication meets the above design 

criteria. 

The beam source top head is coupled through the tubular shaft 

holder (LIFTOF-BSC-16) to a 2" O.D. tubular harden steel shaft^^ vrfiich 

extends out of the vacuum chamber ( shown in Figure 1 ). A mechanical 

handle, a 100-tooth gear^^, and a drum dial angle indicator^^ are 
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Figure 3. Beiam source top head. 

1. 3/4" thick X 10" O.D. 304 stainless steel (to 

mount on Top-Inner Bearing Retainer). 

2. 5/8" thick 304 stainless steel for mounting 

differential chamber can. 

3. 1/4" thick 304 stainless steel for mounting Ijack 

plate. 

4. 1/8" thick 304 stainless steel for mounting nozzle/ 

skimmer holder. 

5. 1/8" thick 304 stainless steel for mounting collimator. 
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Figure 4. Cross section view of beam source rotating seal. 

1. beam source inner chamber. 

2. inner bearing retainer. 

3. outer bearing retainer. 

4. top-inner bearing retainer. 

5. beam source top head. 

6. 16" I.D. Kaydon bearing. 
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mounted on the section of this tubular shaft v^ich is outside of vacuum 

chamber. This simple mechanical handle provides a means for manual 

operation of the beam source rotation. The drum dial angle indicator 

has been calibrated and shows the beam source angle with respect to the 

detector direction. 

On the opposite side of nozzle discharge chamber, a 10" O.D. 

differential chamber can (LIFTOF-BSC-06) is mounted on the top of the 

beam source top head. This differential chamber can ensures a pressure 

difference between the collimation chamber and the scattering chamber 

and provides a reasonably large conductance for pumping. Owing to 

proper sealing and careful assembling this differential chamber can 

rotates with the beam source top head without creating any problems, 

such as pressure variation in vacuum chambers or increase in rotational 

friction. 

A computer controlled rotation driving mechanism has been designed. 

The mechanism uses a stepping motor and a gear set. The following 

procedure has been applied to choose the proper gear set and found to be 

successful; 

1. Estimate the torque needed to move the object. The torque for 

rotating the beam source top head is about 600 Ib-in (9600 

oz-in). 

2. Select a stepping motor that can be interfaced to the existing 

computer and note how much torque it can supply. The chosen 

SLO/SYN synchronous/stepping motor^^ can supply a torque of 1125 

oz-in. 

3. Calculate the torque ratio. R = 9600 / 1125 =8.5 
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4. Set a safety factor of at least four, and determine the gear 

ratio required (torque ratio times the safety factor). 

5. Examine the mounting considerations and decide the gear type. 

Since the SLO/SïN motor is interfaced to the Motorola 6809 

microprocessor ̂ Aich is the LASER MCS system host conputer, the beam 

source rotational motion can be done by invoking the MOVE master command 

in the main command menu of the LASER MCS system. (See .^jpendix A for 

detailed software description.) The range of the beam source rotational 

motion has been set internally in the programming code of the 6809 

processor. According to the present calibration the central axis of the 

detector is set to be the reference axis and the angular range of the 

beam source rotation is between -90 and +90 degrees. In principle, the 

angle = 0 degree v^en the reference axis coincides with the molecular 

beam source axis. The angular resolution determined by both the SLO/SYN 

motor and the 6809 processor is 0.1 degree. 

In addition, a mechanical device with a microswitch compensates for 

any accidental failure of the LASER MCS operation. In case that the 

beam source chamber mechanically goes beyond the preset range, the LASER 

MCS control unit will be turned off through the microswitch interlock. 

Consequently, the rotational motion is terminated immediately. 

The procedure for determining the molecular beam source axis is as 

follows; 

1. Set up a cathetometer and make sure it is leveled. 

2. Set the beam source at approximately 0 degree (angle on drum 



www.manaraa.com

135 

dial indicator = 0) and insert an alignment pin in the 

molecular beam nozzle holder so that it points to the 

cathe tometer. 

3. Adjust the angle setting on the cathe tome ter and focus on the 

tip of the alignment pin. 

4. Rotate the beam source to 180 degrees and reverse the alignment 

pin so that it is still pointing to the cathetometer. 

5. Focus on the tip of the alignment pin and note the position 

with respect to the reference cross hair on the cathetometer. 

6. Move the base of the cathetometer in the proper direction 

(either left or right). 

7. Check the leveling bubble on the cathetometer and adjust the 

base of the cathetometer if necessary. 

8. Rotate the beam source back to 0 degree and reverse the 

alignment pin again to let it point to the cathetometer. 

9. Repeat steps 3-8 until they agree. Thus, the vertical plane 

is defined but the horizontal height is yet to be defined. 

10. Set the beam source at 0 degree and remove the alignment pin. 

11. Adjust the vertical bubble on the cathetometer until 2 halves 

cf the circle become one. 

12. Insert a secondary alignment pin in the center hole of the beam 

source top head. 

13. Focus on the tip of the secondary alignment pin and note the 

position of the pin with respect to the reference cross hair on 

the cathetometer. 

14. Focus the cathetometer on the reference line defined previously 
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on the inner wall of the chamber port of the scattering 

chamber. 

15. Repeat steps 11-14 until both agree. Then the horizontal 

reference is defined. 

16. Use a fine tip diamond scriber to mark a thin line on the side 

of both beam source top head and the stationary base plate. 

This scribed line serves as a calibration reference for 

molecular beam source angle = 0 degree. 

17. Set the drum dial indicator angle = 0 degree. 

The true 0 degree has been precisely determined by a TOF chopper 

vdieel experiment. The setup for the experiment is described in the 

section of the Initial Tests and Operations. The signal coming out of 

mass spectrometer has been recorded for each angle as the source beam 

has been changed from -2.0 to +2.0 degrees in 0.1 degree increments. As 

a result, the maximum signal has been found at +0.9 degree. Therefore, 

the true true 0 degree is +0.9 degree in the mechanical setting. 

Gas inlet system 

The gas inlet system has been assembled to provide a quick 

changeover from one gas to another through the use of a Wallace & 

Tiernan gauge^^ and proper control regulators.A replacement element 

filter^^ and a stainless steel flexible hose have been installed to 

ensure a pure gas flow from the supply reservoir to the molecular beam 

nozzle without being damaged due to beam source rotational motion. 
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Molecular beam nozzle and skimmer 

A high molecular beam intensity may be obtained by the use of 

contoured or slit-type nozzles as discussed by Hagena and Morton.^® 

However, in such arrangements condensation occurs at large source 

Knudson numbers (related to nozzle stagnation pressure and nozzle 

diameter) due to a reduction of all flow field gradients. The source 

Knudson number is proportional to the nozzle diameter for a given mass 

flow through the nozzle. Therefore, one expects to obtain a higher 

speed ratio and intensity of a molecular beam when using a smaller 

diameter nozzle. The lower limit of the nozzle diameter is governed by 

the onset of condensation in the beam gas and the optimum nozzle size 

depends on the nature of the beam gas.^G'^O 

In the present operation of a room tenperature nozzle, the nozzle 

piece has been designed to take advantage of using commercially 

available aperture discs of many sizes and materials.Since a Viton 

O-ring is used in the seals, the nozzle can be heated to 200 C to 

prevent clogging in the nozzle opening or to vary the beam conditions. 

A heater wire, wrapped with ceramic beads for good electrical 

insulation, and a chromo-alumo thermocouple wire are installed on the 

nozzle to permit temperature adjustments and measurements. 

The skimmer, a very important element for successful performance of 

a supersonic beam generation system, is made of stainless steel and has 

a small external angle and a sharp edge. The object of the proper 

skimmer design^^'^^ is: (1) to avoid shock waves formed in front of the 

skimmer, and (2) to minimize skimmer interaction with the flow upstream 
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and downstream from the skimmer entrance, vàiich adversely affects both 

the intensity and the speed ratio of the resultant beam. Therefore, the 

skimmer external angle must be small in order to reduce the number of 

molecules reflected from the outer wall which can disturb the nozzle 

flow; vrfiereas the skimmer internal angle has to be large to minimize 

collisions of beam molecules with the inner wall of the skimmer. With 

these considerations in mind, the skimmer has been made with internal 

and external cone angles of 70 and 80 degrees, respectively. 

The optimum molecular beam intensity is a function of nozzle-

skimmer distance for a given nozzle diameter.To achieve this laaximum 

beam intensity for a particular configuration, a nozzle-skimmer distance 

is normally set to be 50-100 times the nozzle diameter. In most 

experiments the nozzle-skimmer distance has been set to be 60 times the 

nozzle diameter. A typical nozzle-skimmer setup may be seen in 

Figure 1. 

By varying the nozzle conditions, i.e., stagnation pressure, nozzle 

diameter and nozzle-skimmer distance, one can produce an intensive 

molecular beam for desired experiments. For exanple, for a room 

tençerature argon beam at a stagnation pressure of 1 atm, a nozzle 

diameter of 0.005" and a nozzle-skimmer distance of 0.300", the 

molecular density in the scattering volume is about 2 x 10^^ 

molecules/cm^. (See Appendix B for detailed calculation.) 
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Die Excimer Laser 

Since they were discovered in 1975,^4-39 ^^re gas halide excimer 

lasers have proved to be a powerful ultraviolet light source for 

photochemistry studies and many other applications. A Questek^^ Model 

2260 imaltigas excimer laser is used as the photofragmentation light 

source in the MB-LP-TOF mass spectrometer. 

The detailed kinetics of energy transfer in excimer lasers are very 

complex and not yet fully understood. However, It has been found that 

ArF (193nm), KrF (249nm), XeCl(308nm), and XeF(351nm) exhibit intense 

laser output at a total pressure of the gas mixture of a few 

atmospheres.41 The gas mixture contains: (1) halogen donor (e.g., 

molecular fluorine or hydrogen chloride) in concentration of 0.5% or 

less, (2) rare gas (e.g., argon, krypton, or xenon) that combines with 

the halogen to form excimer molecules in a concentration of 0.5% to 12%, 

and (3) buffer gas (e.g., helium or neon) which serves as the energy 

transfer medium in a concentration of 88% to 99% of the total pressure. 

In the present applications of the ArF excimer laser, the "fuel gas" 

components in the gas mixture are as follows: (1) 0.3% of molecular 

fluorine as halogen donor, (2) 9.6% of argon as rare gas, (3) 50.7% of 

helium as buffer-A gas, and (4) 35.4% of neon as buffer-B gas. 

The Questek multigas excimer laser generates four intense laser 

lines of different frequency photons depending upon the fuel gases. 

These four output laser lines are ArF(193nm), KrF(248nm), XeCl(308nm) 

and XeF(351nm). Currently, the ArF laser is used as the light source in 

the laser photofragmentation experiments. The supply fuel gases for ArF 
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laser operations are 5% F2/He (v^ich is 5% molecular fluorine in helium 

for safety reasons) as halogen gas (170 mbar), argon as rare gas (260 

mbar), helium as buffer-A gas (1305 mbar), and neon as buffer-B gas (955 

mbar). -Since the purity of each supply gas is essential to laser power, 

all supply fuel gases used are of high purity grades, e.g., research 

grade (99.9995% purity), or ultrahigh purity grade (99.999% purity).^2 

In general, there are two types of contaminations which shorten the 

fuel gas lifetimes. Particulate contaminants are significant in the 

operations of XeCl and KrF lasers. However, the particulates can be 

easily removed by installing a mechanical microfilter. A wafergard F 

In-line Filter^^ has been installed in the gas circulation line of the 

excimer laser. Gaseous contaminants can be removed only by cryogenic 

trapping or chemical processing. Of the two methods for treating the 

gaseous contaminants, one quickly finds that cryogenic processing is 

simpler and more economical. In the ArF and KrF applications, treatment 

of the gaseous contaminants is a "must". The Questek inc. offers the 

Oxford GP 2000 teirperature-controiled cryogenic gas processor as an 

option for their excimer lasers. However, a simple vacuum line trap 

accompanied by a liquid nitrogen chicken feeder has been built and 

installed in the gas circulation line of the excimer laser. It has been 

found that the home-made liquid nitrogen trap substantially extends the 

fuel gas lifetimes. 

The most commonly used materials for excimer laser optics are VUV-

grade MgF^ and CaF2, and high quality UV-grade fused silica, such as 

Suprasil^^ and Coming^^ 7940 Dl because of their high transmission in 
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the wavelength region below 200 ran. However, the excimer laser cavity 

coupling optics are normally made of MgF2 to resist corrosion of halogen 

gases in the gas mixture chamber. 

Since the atmosphere strongly absorbs the vacuum ultraviolet 

radiation (largely due to the formation of ozone), the laser beam 

intensity is attenuated as it travels through air. To solve this 

problem, one may set up a mechanical device to punç out the air in a 

well-sealed laser path section. However, this normally presents a 

difficulty in sealing the whole region, including the laser chassis and 

the coupling section, between the laser and the bulky vacuum chamber of 

the MB-LP-TOF machine. An alternative way is to flow dry nitrogen gas 

through the properly sealed laser path section to reduce the ozone 

formation. A 10% increase in pulse energy has been observed in our 

flowing nitrogen setup. 

The ArF laser beam coming out of the laser cavity output coupler 

window has an oblong shape with a dimension of approximately 8mm x 20 ram 

and a divergence of 2mr x 3mr. A Suprasil planoconvex lens^® of 1 meter 

focal length is used to focus the excimer laser beam to a size of 2 mm x 

6mm in the scattering zone for the laser photofragmentation experiments. 

Since the center of the laser beam is aligned to coincide with the 

molecular beam source rotational axis, it always perpendicularly 

intersects the molecular beam in the scattering zone. The size of the 

laser beam in the scattering zone may be changed by using different 

focusing lenses of the proper focal lengths. 
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Movable Detection System 

In order to meet the criteria described in the previous section, a 

bakable four-stage differentially pumped detection system has been 

constructed on a one-dimensional translational rail^^ stand Wiich is 

securely coupled to the scattering chamber stand. This detection system 

consists of the ionization chamber and the ion detection chamber. The 

ionization chamber (LlFTOF-DET-01), fabricated by UHV Inc.,^® houses the 

electron bombardment ionizer and the quadrupole mass filter; whereas the 

ion detection chamber (LIFTOF-DET-16) contains the dumbell ion target 

and photomultiplier of the Daly ion detection unit. 

The detection system is mounted on a thick steel plate iiAich is 

supported by four 3/4" diameter threaded rods secured on a pillow 

block.49 The horizontal position of the detection system can be 

adjusted by carefully changing the relative position of the four 

threaded rods. In addition, by slowly turning the nuts on the threaded 

rods fine vertical height adjustments can be made. Although the 

alignment of this detection unit with the beam source generation unit is 

a tedious task, one can use a cathetometer and follow a procedure 

similar to that described previously to achieve it. 

A l-l,/2" stainless steel high vacuum gate valve^® has been 

installed in the front port of the detector chamber so that movement of 

the detector chamber can be done without venting the chamber. At 

present time, the range of flight path lengths for laser 

photofragmentation experiments is 48.9 - 97.2 cm, while that for TOF 

chopper wheel experiments is 33.7 - 82.0 cm. Due to the long flight 
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path length, only a very small fraction of the fragment molecules 

produced in the scattering zone reach the ionizer. In the case of laser 

photofragmentation of a CS2 beam, it is estimated that the number of CS 

fragments arrived in the ionization zone is about 2 x 10^ molecules for 

flight path length = 48.9 cm. All instrument parameters and assunçtions 

for this calculation are found in Appendix C. 

The ionizer chamber is a tall stainless steel liquid nitrogen 

cooled shroud v^ose lower portion is blazed with a OFHC (Oxygen Free 

High-conductivity Copper) copper block. The large liquid nitrogen 

cooled surface serves as a cryosorption panel to provide effective 

punmping for condensable matter (depending on the nature of the 

gases^l), ^ereas the copper block provides a mounting base for the 

electron bombardment ionizer. 

Because of the length of the stainless steel shroud in contact with 

liquid nitrogen, distinct shrinkage due to thermal contraction^^ is 

expected. As a consequence, the true position of ionizer changes about 

1/8" after filling the liquid nitrogen reservoir. To solve this 

problem, a 5-1/2" I.D. stainless steel flexible coupling bellows^^ has 

been installed between the ionizer chamber mount flange and the detector 

chamber port flange as shown in Figure 2. This flexible coupling 

bellows provides a means for adjusting the position of the cold ionizer 

(77 K) in the crucial detection system alignment process. 
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The ionizer 

One of the design goals for the detection system of the MB-LP-TOF 

machine is to detect all types of neutral fragment molecules. 

Therefore, an axial type electron bombardment ionizer of high ionization 

efficiency is used (Extranuclear^'^ Model 041-1). All electrical wires 

in the ultra high vacuum, environment are bare and made of 0.050" 

diameter electronic grade oxygen free solid copper (Copper 101).^5 

Power for the ionizer is supplied by an ionizer control through a 

10-wire high vacuum instrumentation feedthrough^® (Extranuclear Model 

020-2). 

The electron bombardment ionizer is a molecular density detector. 

The number of ions "N" formed per second in the ionizer is given by^^ 

N = inlAa(E) 

where "i" is the electron flux in the ionization region, "n" is the 

number density of the species being ionized, "1" is length of ionization 

region, "A" is the cross sectional area of the ionization region that 

the electron beam sweeps out, and "e(E)" is the ionization cross 

section. One sees that "N" can be increased by increasing the electron 

flux to the ionization volume. Furthermore, the difference betv/een the 

the total ion signal obser/ed and the ion signal from the residual gases 

is due to the ionization of scattered fragment molecules and is the 

effective ionization signal. Thus, to achieve a better signal to noise 

condition, one may enlarge the beam entrance aperture in the ionizer. 

An increased signal to noise ratio is indeed observed when the diameter 

of ionizer entrance aperture is changed from 1/8" to 1/4". 
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The mass filter and exit lenses 

A Paul type quadrupole mass filter^®"®*^ has been chosen to serve as 

a mass filtering unit due to its siirplicity in design and construction. 

In addition, the transmission and resolution of this type of mass filter 

can be readily adjusted to optimize the two conflicting requirements of 

high detection sensitivity and resolution. 

The quadrupole mass filter is siitçly a set of four stainless steel 

rods with proper insulation spacers. The stainless steel rods (LIFTOF-

DET-05) are precisely machined and polished with micropolishing powders 

to a high surface finish.Two insulation spacers (LIFTOF-DET-07) made 

from MACRO glass ceramic material^^ are used to hold these four 

stainless steel rods in a nearly perfect position. Since all pieces are 

precisely machined and the MACRO spacers are fragile, extreme care is 

required vAien inserting the whole unit into the Quadrupole Rod Can 

(LIFTOF-DET-12). The electrical wires in the vacuum chamber are 

attached by mechanically tightening 0.060" diameter bare wires (copper 

101) to a modified two-connector electrical vacuum feedthrough.®^ The 

power supply for the mass filter is an Extranuclear Model 011-1 with an 

appropriate High Q Head. 

The exit lens set consists of the Entrance Lens (LIFTOF-DET-02), 

the Middle Lens ( LIFTOF-DET-03 ), and the Exit Lens (LïFTOF-DET-04 ) and 

is mounted on the Quadrupole Rod Can Backplate (LIFTOF-DET-14) through 

the use of 1/8" ceramic rods^'^ and 0-80 stainless steel threaded rods. 

This exit lens set has been constructed to improve the ion collection 

efficiency in the ion detection unit. All electrical connections inside 
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the vacuum chamber are accomplished by spot-welding short pieces of 

0.020" diameter bare tantalum wires onto the nickel leads of a three-

connector instrumentation feedthrough.®^ A EG&G ORTEC^^ Model 459 and a 

TENNELEC^® Model TC950 0-5 kv DC power supply units are used for this 

exit lens set. In normal operation, the applied voltages are -150V, 

-1 kv, and -1 kV, respectively, for the Entrance Lens, the Middle Lens, 

and the Exit Lens. 

The Daly ion detector and photon counting electronics 

Although an electron multiplier may be used as an ion detector, a 

Daly scintillation type ion detector®^ has been constructed because of 

its effectiveness in detecting low ion currents. The Daly ion detector 

is coirçosed of an aluminum coated, dumbbell-shaped stainless steel ion 

target, a scintillation window and a photomultiplier. In order to 

reduce the probability of field emission and increase secondary electron 

yields, all machined stainless steel pieces in this ion detection region 

are polished to a very high surface finish. 

The ions coming out of the exit lens set of the mass filter are 

accelerated toward the dumbbell high voltage cathode surface, where they 

generate secondary electrons. Since aluminum has the highest secondary 

electron yield per bombarding ion among most common metals,a 2500 À 

thick layer of aluminum is coated^^ on the ion target surface of the 

stainless steel dumbbell. The secondary electrons emitted from the 

aluminum surface strike the scintillation window and generate 

fluorescence ̂ ich is detected by a high gain photomultiplier. 
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The scintillation window is a quartz plate to which is cemented a 

2.0 mm thick Pilot B plastic scintillator.^^ The scintillator surface 

is then coated with aluminum to a thickness of 1600 This thin 

aluminum layer does not prevent the high energy electrons from reaching 

the scintillation, but cuts down on the background light (mostly coming 

from the filaments of the ionizer) that can enter the photomultiplier, 

keeps the surface of the scintillation window at ground potential, and 

thus increases the photon detection efficiency from the scintillator. 

The optical contact between the uncoated surface of the quartz 

plate and the surface of the EMI 9924S photomultiplier tube^^ is made by 

a thin layer of Dow Coming Q2-3067 Optical Couplant^^ in order to lower 

reflection losses of photons of small incident angle on the surfaces of 

the scintillator and the photomultiplier. In addition, the 

photomultiplier is wrapped with a thin sheet of M^Shield^® to reduce the 

magnetic interference from the nearby instruments and ion pumps. 

In normal operation, the voltage applied to the dumbbell ion target 

is between -18,000 and -25,000 VDC, lAile that applied to the 

photomultiplier is between +1,050 and 1,250 VDC. 

Owing to the use of the high gain photomultiplier, further signal 

cUîçlificaticn is not needed. However, the signal pulses from the 

photomultiplier pass through a EGSG ORTEC Model 436 discriminator, and 

are counted by a EG&G ORTEC Model 449/2 counter/ratemeter and also 

parallel counted and stored in the Motorola 6809 microprocessor of the 

LASER MCS unit. (See Appendix A.) 
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Data Acquisition and Manipulation 

The heart of the data acquisition system of this MB-LP-TOF machine 

is a multichannel scaler (LASER MCS unit) which contains a Motorola 6809 

microprocessor with 1024 memory locations for storing data directly from 

the photon counting electronics of the detection system. The data 

acquisition routine is initiated by a modulated pulse from a photodiode 

(chopper wheel experiment) or by a triggering pulse coming directly from 

the pulsed excimar laser (laser photofragmentation TOF experiment). 

In the TOF chopper \Aeel experiment, a photon emitter and receiver 

set is used as the triggering source for the data acquisition task. The 

photon emitter is a Motorola MFOE106 photodiode which continuously emits 

infrared photons and the photon receiver is a Motorola MFOD photodiode. 

The trigger for obtaining the TOF spectrum is obtained by chopping the 

emitting infrared signal with the slotted chopper v^eel vrtiich rotates at 

desired speeds. 

The chopper wheel is made of aluminum alloy 2024-T3 (LIFTOF-MŒ-

18). It is 7.000" in diameter, 0.125" thick in the center portion, and 

0.020" thick on the edge of its outer circumference. On opposite sides 

of the outer circumference of the chopper wieel are precisely machined 

two identical slots, 0.020" wide x 0.280" long. These two slots are 

used as a gated passways for molecules to fly through the chopper wiieel 

to the detector system and for photons to trigger the photon receiver to 

send a pulse to the multichannel scaler for starting the data 

acquisition task. 
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The chopper v^eel is powered by a TKW type FC hysteresis 

synchronous motor^^ vAiich can rotate the vdieel up to 500 revolutions per 

second. As the slot in the chopper ;^eel moves past the detector 

direction, it allows a segment of molecules to fly toward the detector. 

At the same time the molecules start to move into the detector a 

triggering pulse is initiated in the photon receiver vAiich causes the 

time counter to reset to zero and begin the data acquisition routine. 

As the molecules travel through the detector they are ionized in the 

ionizer; the ions are mass-selected by the quadrupole mass filter and 

then detected by the Daly ion detector. Through the photon counting 

electronics, a series of fast voltage pulses coming out of the 

discriminator output terminal is fed into the LASER MCS unit where they 

are counted and accumulated in the various memory locations according to 

their time domains. 

An oscilloscope is used as the X-Y display to show the present 

contents of all 1024 memory locations in the microprocessor of the LASER 

MCS unit. The new contents in the multichannel scaler are accumulated 

at six second intervals into the memory according to their particular 

locations in order that the X-Y display might provide a reliable 

indication of the data acquisition process. Therefore, the TOF spectrum 

is observed on the oscilloscope screen during the data aquisition 

period. 

In the laser photofragmentation TOF experiment, a trigger pulse 

comes from the external trigger port of the excimer laser and 

corresponds to each firing of the laser pulse. The trigger pulse 
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initiates each data acquisition sweep. The TOF spectrum of the product 

fragments is shown on the X-Y display in exactly the same manner as that 

described above for the TOF chopper vdieel experiment. The detailed 

operation of the nraltichannsl scaler for the data acquisition is 

described in Appendix A. 

The manipulation of the data from the MB-LP-TOF machine is 

accomplished by a Digital LSI-11/23 microcomputer. The computer system 

includes several auxiliary external hardware components (keyboard/screen 

terminals, an auto dial modem, a near letter quality matrix printer, and 

a multipen plotter) and many useful programs (FORTRAN-77, HGRAPH, VTCOM, 

etc. in the system software library). The LSI-11/23 computer is 

interfaced to the LASER MCS system through a common RS-232-C 

communication device. 

When a TOF experiment is completed, the data stored in the 6809 

microprocessor memory of the LASER MCS unit are transferred to the LSI-

11/23 computer by the modem (MOdulator/DEModulator ) and the VTCOM 

communication program. The data transferring rate is internally set in 

the 6809 microprocessor at 2048 bauds (2048 bits per second, or 

approximately 200 characters per second). The data transfer procedure 

is as follows; 

1. Press "Ctrl-P" to invoke the VTCOM command mode. 

2. Type "OP" and hit Return key to open a file in the LSI-11/23 

conpiter to store the current time of flight data. 

3. TVpe "NNNNNN" and hit the Return key. The file is then named 

"NNNNNN.LOG". 
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4. Hit Return key one more time to invoke the main command menu of 

LASER MCS system. 

5. Type "PRIN" and hit Return key to start transferring data from 

the 6809 microprocessor memory to the LSI-11/23 conçuter. At 

this moment, one should see the contents of each memory location 

scrolling on the terminal screen until the process is conçlete. 

6. Press "Ctrl-P" to invoke the VTCOM command mode again. 

7. Type "CLO" and hit Return key to close the NNNNNN.LOG file in 

the LSI-11/23 computer. The ̂ ole data transfer process is then 

conpleted. 

Once the TOP data are stored in the LSI-11/23 conçiuter, the rest of 

the data manipulation tasks can be achieved by using various fortran 

programs. Two of the most useful programs written in FORTRAN-77 

language can be found in Appendix F. The data plotting routines are 

done by including a graph plotting subroutine called HGBAPH in the main 

fortran program. The HO^APH subroutine program can do most common data 

plotting tasks such as automatic scaling, axis labeling, multicurve 

plotting, legend writing, etc. The results of the data manipulation can 

be seen on the VISUAL 550 graphic terminal screen and, moreover, their 

hard copies or plots can be obtained from the Digital LA210 

Letterprinter or the Houston DMP-29 imiltipen digital plotter. 
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Initial Tests aix3 Operations 

Mass spectrum of background gases in detector chamber 

In the initial operation of the newly constructed detection system, 

a mass spectrum has been taken to identify the most abundant background 

gases in the detector chamber. The mass spectrum is shown in Figure 5. 

However, the gas component ratio shown in the mass spectrum will change 

with time due to the substantial puirping in the detector chamber under 

machine operation conditions. Therefore, another mass spectrum must be 

taken if one wants to know the partial pressure of a particular 

background gas inside the detector chamber at the time of the 

experiment. 

Delay time in mass spectrometer 

For all TOF measurements in the MB-LP-TOF machine, there is always 

a delay"^® between the time a neutral molecule reaches the ionizer and 

the time a pulse is counted by the detector. Most of this delay is 

caused by the time required for the ion to drift through the mass 

spectrometer. This ion drift time is approximately proportional to the 

square root of the ion mass. However, because of the extraction 

difficulties caused by the negative space charge of the electrons in the 

ionizer, a "memory effect"^^ is expected. As a result, the true 

experimentally measured delay times are normally greater by a few 

microseconds than those predicted theoretically from the corresponding 

m/e values and the ionizer conditions.Therefore, measurements of 

the ion drift times are necessary to correct the flight times of the 

molecules in the TOF experiments. 



www.manaraa.com

Figure 5. Mass spectrum of background gases in dector chamber. 
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An experiment has been set up to measure the ion drift delay time 

in the mass spectrometer of the MB-LP-TOF apparatus. By using a 

function generator ̂ ich provides +10V square waves and a 18V battery, 

one can send a pulse of +18+10V to the extractor of the ionizer and 

observe the signal coming out of the discriminator and display on the 

oscilloscope. The ion drift times through the mass spectrometer are 

determined from the oscilloscope display screen, lAere the difference 

between the initial position of the pulses from the function generator 

(Input Channel A) and the starting position of the signal pulses from 

discriminator (Input Channel B) is the ion delay time. The results of 

these delay time measurements are plotted and shown in Figure 6. 

TOF chopper wheel experiments 

A brief schematic drawing of the time of flight experimental setup 

is shown in Figure 7. During the TOF chopper wheel experiment the 

molecular beam is pointing directly at the detector. When the chopper 

wheel rotates so that a slot on the wheel is in the direction of the 

detector, a segment of molecules will pass through the slot fly toward 

the ionizer. Thus, the slot acts like a shutter whose open time period 

is dependent upon the rotational speed of the chopper wheel. The 

rotation of the chopper vAeel is controlled by the LASER MCS system 

control unit which sets the initial vrtieel rotational speed at 40 Hz 

(revolutions per second) in the counterclockwise direction (or "R" 

direction in the programmed conputer language code). However, the 

desired wheel rotational direction and speed may be set by entering the 
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Figure 7. Schematic of time of flight experimental setup. 

1. supersonic beam nozzle. 

2. skimmer. 

3. collimator. 

4. scattering center. 

5. time of flight chopper wheel. 

6. photon emitter and receiver. 

7. ionizer. 

0. chopper wheel rotational center. 

9. beam defining aperture. 

Xns — nozzle / skimmer distance. 

Xnc — nozzle / collimator distance. 

Xnt — nozzle / scattering center distance. 

*nw — nozzle / chopper wheel distance. 

Xni — nozzle / ionizer distance. 



www.manaraa.com

159 



www.manaraa.com

160 

appropriate input information in response to the chopper wheel direction 

and speed query modes during the operation of the LASER MCS system. (See 

i^jpendix A for detailed operational description. ) The chopper wheel 

rotational speed is then related to the channel dwell time in the 

multichannel scaler for the TOF chopper \*eel experiments. 

In order that the data acquisition routines can be meaningful, the 

sweep time (the channel dwell time times the number of channels) in the 

multichannel scaler must be less than the time between pulses received 

from the triggering device. The multichannel scaler is designed so that 

its channel dwell time can be changed by setting an external thumbwheel 

dialing device. Since a 50 M Hz crystal oscillator is used as the time 

base, the channel dwell time = 20 nanoseconds x (thumbvdieel number + 1). 

The number of channels in the multichannel scaler has been set to 1024 

internally, therefore a "99" on the thumbwheel dialing device gives a 

sweep time of 2.048 milliseconds. For a 2-slot chopper i^eel rotating 

at 100 Hz, the pulse interval is 5 milliseconds. Therefore, the upper 

limit for an allowable number on the thumbwheel dialing device is 243 

(4.88 microseconds/channel). 

Different ̂ eel rotational directions in the chopper vdieel 

experiments may yield different results for the TOF time measurements. 

This inevitable problem arises from: (1) uncertainty in the true 

location of the two machined slots on the chopper wheel, and (2) 

inaccuracy in mounting the tiny photon emitter and receiver set vdiich 

triggers the timing circuitry in the data acquisition routine task of 

the LASER MCS system. To get around this problem, the measured time of 
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flight data has been calibrated by running the chopper vdieel in opposite 

directions at the same rotational speeds. The result is shown in 

Figure 8. Thus, the true time of flight data set is taken to be the 

average values of the two data sets for "F" and "R" directions. 

This has been achieved by placing a 0.005" diameter aperture behind 

the chopper wheel. The aperture provides better differential puitçing in 

the detector chamber because it prevents many molecules passing through 

the chopper slot from entering the detector. It is inçortant that the 

pressure in all three regions of the detector chamber be low in order 

that a good signal to noise ratio is observed for the time of flight 

chopper wheel experiments. 

The velocity distribution of a molecular beam under particular 

operational condition can be determined by TOF chopper vrtieel 

experiments.®^"®^ The velocity distribution function f(v) is defined by 

dl = iQf(v) dv (1) 

^ere IQ is the beam intensity without interruption by the chopper wheel 

and V is the velocity of the molecules. The total number of molecules 

per unit area entering the ionizer is NQ = Igtg for the shutter open 

time interval of tg. (At the moment the center of the slot on the 

chopper vmeel is in the direction of the detector.) The distribution of 

these molecules is then expressed as 

dN = NQf(v) dv. (2) 

In the ideal conditions where (1) the shutter open time interval is 

negligible in comparison with the flight time of molecules and (2) the 

ionization length of the detector is negligible in conçarison with the 
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Figure 8. Time of flight spectrum of CS2 for chopper wheel running in 

two opposite directions. 

experimential conditions: 

room tenperature nozzle; 

stagnation pressure = 150 Torr; 

nozzle diameter - 0.005"; 

nozzle/skimmer distance <= 0.300"; 

flight path length =33.7 cm; 

dwell time » 2 microseconds per channel. 

1. "F" direction, peak at channel 390. 

2. "R" direction, peak at channel 417. 
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flight path length 1, the flight time of molecules is given by 

t  =  l / v .  ( 3 )  

From equations (2) and (3) one obtains 

I = dN / dt = NQf(v)v2 / 1. (4) 

Since the electron bombardment ionizer is a molecular density detector, 

the detected signal S is proportional to the number density of the 

molecules in the ionizer. Therefore, 

S ~ n = I/v = Ngf(v)v / I (5) 

or, S ~ n = I/v = Ngf(v) / t. (6) 

The theoretical velocity distribution of beam molecules on the axis 

is given by®^ 

f(v) = c(-^)exp[—- 1)2], (7) 

where c is a constant; Vg is the stream flow velocity at the skimmer 

entrance; y is the specific heat ratio of the beam gas; Mg is the Mach 

number for the gas stream at the skimmer entrance. For a continuum 

isentropic flow from the nozzle to the skimmer entrance, and with no 

interference of the stream entering the skimmer. 

S - m 2^ 

2kTQ T-1 - . 
(1 + 2)-x (8) 

m 

•ïviiere k is the Boltzmann gas constant; Tg is the gas stream temperature at 

the skimmer entrance; m is the mass of the gas molecules and Tq is the 

nozzle stagnation pressure. From equations (6) and (7), one can derive 
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S - exp[-^-r«s2(.^ - 1)2]. 
t s 

(9) 

Then, the nonnalizied expression of equation (9) is 

max T 
exp{-^YMg2[(^ _ 1)2 _ (b - 1)2]}, (10) 

where b - -|-[1 + (1 + —ii—)l/2] 

and T is the ratio of flight time t to the flight time for which S is a 

maximum. 

Using equation (10) ans may plot out the calculated TOF data as shown 

in Figure 9. Diese calculated results are then used to fit the 

experimental data to obtain the corresponding beam gas speed ratio (Mach 

number), from vSiich the velocity distribution of the beam molecules may be 

obtained by the use of equation (7). Figure 10 shows the TOF spectrum of 

CS2 obtained with a nozzle stagnation pressure of 150 Torr. The observed 

velocity distribution of the beam molecules corresponds to a Mach number 

of 7. 

In the ̂ otofragmentation experiment, the measured TOF distribution 

in the laboratory frame aast be converted to energy distribution in the 

center of mass frame so that the data can be meaningful for the molecular 

photofragmentation dynamics studies.The transformation procedure is 

discussed in ̂ ç^ndix D and a Fortran program for this routine task is 

included in ̂ ipendix F, However, in such a transformation one needs to 

consider the so-called Newton diagram (velocity vector representation) 

which requires information on the initial velocity of the parent 

molecules. 
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Figure 9. Calculated time of flight signal for a molecular beam at 

various speed ratios. 

1. Mach number ft 0 ( 

2.  Mach numbs r n 1. 

3. Mach number 5. 

4. Mach number 10. 

5. Mach number 20. 

6.  Mach number 50. 
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Figure 10. Time of flight spectrum of CS2 beam, 

experitnental conditions; 

room temperature nozzle; 

stagnation pressure = 150 Torr; 

nozzle diameter « 0.005"; 

nozzle/skimmer distance = 0.300"; 

flight path length = 33.7 cm; 

dwell time = 2 microseconds per channel. 
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Figure 1.1. Time of flight spectrum of CS2 beam, 

experimental conditions: 

room temperature nozzle; 
stagnation pressure = 150 Terr; 

nozzle diameter =• 0.005"; 

nozzle/skimmer distance = 0.300"; 

flight path length = 33.7 cm; 

dwell time = 2 microseconds per channel. 
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In the CS2 photofragmentation experiment, the initial velocity of the 

CS2 molecules has been measured by the TOP chopper wheel experiment. 

Figure 11 shows the TOF spectrum of CS2 molecules, in which the spectrum 

has been calibrated for the direction of the chopper vmeel rotation and 

the delay time in the detection system as previously discussed. The most 

probable velocity observed for those experimental conditions is about 

4.6 X 10^ cm/sec. 

The initial tests and experiments described above have verified the 

proper performance of the MB-LP-TOF machine. 

References 

1. E. H. Taylor and D. S. Datz, J. Chem. Phys. 23, 1711 (1955). 

2. H. U. Hostettler and R. B. Bernstein, Phys. Rev. Lett. 5, 318 
(1960). 

3. F. A. Morse, Ph.D. Dissertation, University of Michigan, Ann Arbor, 
MI, 1962. 

4. D. R. HerschBach, G. H. Kwei and J. A. Norris, J. Chem. Phys. 34, 
1842 (1961). 

5. K. R. Wilson, UCRL Rep. 11645, Lawrence Radiation Laboratory, 
Berkeley, CA 1964. 

6. S. J. Riley, Ph.D. Dissertation, Harvard University, Cambridge, 
MA, 1970. 

7. y.  T. Lee, J. D. McDonald, P. R. LeBreton and D. R. Herschbach, 
Rev. Sci. Instrum. 1402 (1969). 

8. R. W. Bickes, Jr. and R. B. Bernstein, Rev. Sci. Instrum. 759 
(1970). 

9. D. L. McCullouah. Jr., F. Kalos and J. Ross, J. Chem. Phys. 121 
(1973). 

10. J. B. Anderson, R. P. Andres and J. B. Fenn in Advances in 
Chemical Physics, edited by J. Ross (John Wiley & Sons, New York, 
1966), Vol. 10, p.308. 



www.manaraa.com

173 

11. H. F. Prest, Ph.D. Dissertation, lowa State University, Ames, lA, 
1984. 

12. Drawings are available through: Professor C. Y. Ng, 103 Wilhelm 
Hall, Ames Laboratory, Iowa State University, Ames, lA 50011. 

13. 20" Halo baffle for Varian model HS-20 diffusion ptunç (Order No. 
0322-K1855-320), Varian Associates, Vacuum Division, 708 Landwehr 
Rd., Northbrook, IL 60062. 

14. Stokes Vacuum Products, 5500 Tabor Road, Philadelphia, PA 19120. 

15. Leybold-Heraeus Vac. Prod. Inc., 1210 S. Garfield, Lombard, IL 
60148. 

16. This Varian model 330 low-profile water cooled baffle for VHS-10 
diffusion punç (.Order No. 0330-F8600-310) can be used with 
mechanical refrigeration to reduce equilibrium vapor pressure of 
re-evaporating punp fluid and thereby attain a partial trapping 
effect. 

17. Balzers Corp., 8 Sagamore Park Road, Hudson NH, 03051. 

18. Varian Cat. No. 951-5219, Varian Associates, Vacuum Division, 708 
Landwehr Road, Northbrook, IL 60062. 

19. Kaydon model no. KC160XPO, Keene Corp., Kaydon Bearing Division, 
Muskegon, WI 49443. 

20. Tubular Case 60 Shaft, Class L, 2" O.D. x 1-1/4" I.D., Thomson 
Industries, Inc., Shore Road, Port Washington, NY 11050. 

21. Parker No. A2-385, Parker Hannifin Corporation, 0-Ring Division, 
2360 Palumbo Drive, Lexington, KY 40509. 

22. Boston Gear No. G1055, 12 D.P. Worm Gear Set, Boston Gear 
Division, 14 Hayward Street, Quincy, MA 02171. 

23. Drum Dial Stock No. Al-4, Winfred M. Berg Inc., 509 Ocean Ave., E. 
Rockway, Long Island, NY 11518. 

24. Superior Model M112-FD06 SLO-SYN Synchronous/Stepping Motor, 
Superior Electric Co., 799 Roosevelt road. Glen Ellyn, IL 60137. 

25. Wallace & Tieman Model 62A-4A-0150 Differential Pressure Gauge, 
Pennwalt Corporation, Wallace & Tiernan Division, 25 Main Street, 
Belleville, NJ 07109. 

26. For exanple, VICTOR rare gas regulator with CGA-580 adapter for 
0-100 psig positive pressure coarse control and Matheson Model 3491 



www.manaraa.com

174 

for 0-760 mm Hg fine pressure regulation. 

27. Matheson Model 6184-P4FF Replaceable Element Filter, Matheson Gas 
Products, P. 0. Box 96, Joliet, IL 60434. 

28. 0. F. Hagena and H. S. Morton Jr., "Analysis of Intensity and Speed 
Distribution of a Molecular Beam from a Nozzle Source", Rarefied 
Gas Dynamics, Vol. 2 (Academic Press, New York, 1967), p. 1369. 

29. K. Bier and 0. F. Hagena "Optimum Condition for Generating 
Supersonic Molecular Beams", ̂ refied Gas Dynamics, Vol. 2 
(Academic Press, New York, 1966), p. 260. 

30. J. E. Scott, Jr. and J. E. Drewry, "Characteristics of 
Aerodynamic Molecular Beams", Rarefied Gas Dynamics, Vol. 1 
(Academic Press, New York, 1963), p. 516. 

31. Ernest F. Fullam, Inc., P. 0. Box 444, Schenectady, NY 12301. 

32. R. N. Zapata, Ph.D. Dissertation, University of Virginia, 
Charlottesville, VA, 1960. 

33. R. Behrens Jr., Ph.D. Dissertation, University of California, 
Berkeley, CA, 1975. 

34. S. K. Searles and G. A. Hart, Appl. Phys. Lett. 27, 243 (1975). 

35. C. A. Brau and J. J. Ewing, Appl. Phys. Lett. 27, 435 (1975). 

36. E. R. Ault, R. S. Bradford, Jr. and M. L. Bhaumik, Appl. Phys. 
Lett. 27, 413 (1975). 

37. J. J. Effing and C. A. Brau, Appl. Phys. Lett. 27, 350 (1975). 

38. J. A. Mangano and J. H. Jacob, Appl. Phys. Lett. 27, 495 (1975). 

39. G. C. Tisone, A. K. Hays and J. M. Hoffman, Opt. Commun. 15, 188 
(1975), 

40. Questek Inc., 44 Manning Road, Billerica, MA 01821, 

41. "Excimer Lasers", ed. by Ch. K. Rhodes (Springer-Verlag, New York, 
1984). 

42- The high purity gases are purchased from Spectra Gases, 320 Mt. 
Pleasant Ave., Newark, NJ 07104 or MG Industries, 175 Meister Ave., 
P. 0. Box 5328, North Branch, NJ 08876. 

43. Millipore Cat. No. WGFG 06W Bl Wafergard F In-line Filter, 
Millipore Corporation, Ashby Road, Bedford, MA 01730. 



www.manaraa.com

175 

44. Suprasil is a trade mark of Amersil Inc. 

45. Coming Glass Works, Advanced Products Department, Coming, NY 
14831. 

46. Acton Part No. 1.5D-.5MX, Acton Research Corporation, P. 0. Box 
215, 525 rîain Street, Action, î-îA 10720. 

47. Thomson Cat. No. SR-10 shaft support and 5/8" nominal diameter 60 
case, class L solid shaft, Thomson Industries, Inc., Shore Road, 
Port Washington, NY 11050. 

48. Ultra High Vacuum Instruments, Inc., 901 Fuhrmann Blvd., Buffalo, 
NY 14203. 

49. Thomson Cat. No. SPB-IO-OPN open type pillow block ball bushing, 
Thomson Industries, Inc., Shore Road, Port Washington, NY 11050. 

50. MDC Model GVA-1500-V, MDC Vacuum Products Corporation, 23842 Cabot 
Blvd., Haywood, CA 94545. 

51. S. A. Stem, R. A. Hemstreet and D. M. Ruttenbur, J. Vac. Sci. 
Technol. 3, 99 (1965). 

52. Y. T. Lee, J. D. McDonald, P. R. LeBreton and D. R. Herschbach, 
Rev. Sci. Inst. 1402 (1969). 

53. Huntington Cat. No. VF605, Huntington Laboratories, 1040 
L'Avenida, Mountain View, CA 94043. 

54. Extranuclear Laboratories Inc., Box 11512, Pittsburgh, PA 15238. 

55. Utility Brass & Copper Corp., 5 Caesar Place, Moonachie, NJ 07074. 

56. Varian Model No. 954-5165, Varian Associates, Vacuum Division, 708 
Landwehr Road, Northbrook, IL 60062. 

57. R. Weiss, Rev. Sci. Instrum. 397 (1961). 

58. W. Paul and H. Streinwedel, Z. Naturforsch. 448 (1953). 

59. W. Paul and M. Raether, Z. Physik 140, 262 (1955). 

60. W. Paul, H. P. Reinhard and U. von Zahn, Z. Physik 152, 143 (1958). 

61. Such as Linde A, a micropolish aluminum oxide powder of particle 
size of 0.3 micron. They are available from LECO Corporation, 300 
Lakeview Ave., St. Joseph, WI 49085. 

62. MACRO is a Corning machinable glass ceramic; it may be purchased 
from Wesley Tool & Die Corp., Technical Products Division, 5030 



www.manaraa.com

176 

North 124th St., Milwaukee, WI 53225. 

63. MDC Model Model MC-152, MDC Vacuum Products Corporation, 23842 
Cabot Blvd., Haywood, CA 94545. 

64. The high precision ceramic rods are available from Kimball 
Physics, Inc., Wilton, NH 03086. 

65. J. I. Morris Co., 394 Elm Street, Southbridge, MA 01550. 

66. MDC Model MHV-275-3, MDC Vacuum Products Corporation, 23842 Cabot 
Blvd., Haywood, CA 94545. 

67. EG&G ORTEC Inc., 100 Midland Road, Oak Ridge, TN 37830. 

68. TENNELEC Inc. P. 0. Box D, Oak Ridge, IN 37830. 

69. N. R. Daly, Rev. Sci. Instrum. 31, 264 (1960). 

70. H. C. Bourne Jr., R. W. Cloud and J. G. Trurcp, J. Appl. Phys. 
596 (1955). 

71. Acton Research Corporation, P. 0. Box 215, 525 Main Street, Action, 
MA 10720. 

72. The mixing ratio of optical cement NE-581 is resin: hardener = 
4:1. Both cement and Pilot B scintillator are available from 
Nuclear Enterprises, Inc., 931 Terminal Way, San Carlos, CA 94063. 

73. J. L. Young, J. Appl. Phys. 27, 1 (1956). 

74. THRCttJ EMI Inc., 80 Express Street, Plainview, NY 11803. 

75. The Dow Corning Q2-3067 Optical Couplant is grease-like conpound 
with good low temperature adhesion, high clarity, good resolution 
properties and excellent mechanical shear stability. Its 
refractive index is close to that of quartz glass and many 
plastics. The Optical Couplant is available from Dow Corning 
Corporation, Midland, MI 48640. 

76. M/yShield Company, Division of Borneo, Inc., 121 Madison Street, 
Maiden, MA 02148. 

77. TRW Globe Part Number 75A1003-2 type FC Single Phase A.C. 
Hysteresis Synchronous Motor, it is available from Arrow 
Electronics, 375 Collins Road, N.E., Cedar Rapids, lA 52402. 

78. J. H. Ling and K. R. Wilson, J. Chem. Phys. 101 (1975). 

79. H. C. H. Beijerinck, R. G. J. M. Moore and N. F. Vester, J. Phys. 
E, 7, 31 (1974). 



www.manaraa.com

177 

80. H. Shinohara and N. Nishi, J. Chem. Phys. 77, 234 (1982). 

81. 0. F. Hagena and W. Henkes, Z. Naturforsch. 1^, 851 (1960). 

82. J. B. Anderson and J. B. Fenn, Phys. Fluids, 8, 780 (1965). 

83. 0. F. Hagena and A. K. Vanna, Rev. Sci. Instrum. 39, 47 (1968). 

84. H. Haberland, U. Buck and M. Toile, Rev. Sci. Instrum. 56, 1712 
(1985). 

85. G. E. Busch and K. R. Wilson, J. Chem. Phys. 3626 (1972). 

86. G. E. Busch and K. R. Wilson, J. Chem. Phys. 3638 (1972). 

87. R. K. Sparks, Ph.D. Dissertation, University of California, 
Berkeley, CA, 1979. 



www.manaraa.com

178 

SECTICN III A LASER PHOTOFRAGMENTATIOSI STUDY OF 

CABBŒ DISULFIDE AT 193 NM 

Introduction 

Studies of kinetic and dynamic mechanisms of photodissociation 

processes in the VU7 region lead to a better understanding of plasms 

physics, free radical chemistry, laser-assisted chemistry, and 

atmospheric chemistry.^ These studies have been greatly inproved due to 

the rapid development in the techniques of molecular and cluster beams 

and pulsed VUV lasers.^ 

It is well known that supersonic nozzle sources can produce high 

intensity, cooled molecules in a collisionless condition.^"® Busch et 

al.° first adopted this technique and developed a time-of-flight (TOF) 

technique by crossing a molecular beam with a laser beam and measuring 

the flight times and angular distributions of the product fragments with 

a mass spectrometer. This TOF technique has been used successfully for 

studying molecular photodissociation dynamics such as lifetimes and 

symmetry properties of dissociative excited states,and energy 

partitioning^^ and vibrational distributions of fragments. 

Photochemistry of carbon disulfide (CS2) has been studied by flash 

photolysis,resonance fluorescence,direct UV absorption, 

electron impact excitation,KrF laser two photon dissociation,^^ and 

ArF laser photolysis.^2-25 

The ground state electronic configuration of the linear CS2 can be 

written as ... .(3ffg)^(lrty)^(4ffg)^(2iig)'^, state. Upon absorption of 
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a photon in the wavelength range of 185-230 nm, the ground state CS2 

molecule is excited to a bent predissociative state with the electronic 

configuration of (3Gg)2(l%y)4(4eg)2(2ng)3(3n^*)l^ ^82(^2^'"') state, 

following a mixed intravalency/Rydberg transition. By analyzing a 

partial rotational spectrum, Douglas and Zanon^® has shown that upon 

this photoexcitation, the C-S bonds lengthen from 1.55 to 1.66 Â and S-

C-S angle decreases from 180 to 153 degrees. 

The energetics of CS2 photodissociation at 193 nm are as follows: 

CS2 + hM > CS(X + S(3p) m = 45.0 Kcal/mol (1) 

CS2 + hM > CS(X ^Z) + S(^D) ÛH = 18.6 Kcal/mol (2) 

In the past few years, controversy has been arisen in determining the 

branching ratio of these two photodissociation channels. McCrary et 

al.24 have pointed out the experimental problems encountered and have 

performed a coaxial TOF accompanied with a laser induced fluorescence 

experiment. They have determined that S(^P)/S(^D) = 0.5. However, in 

another publication,^ Jackson reported that the branching ration 

S(^P)/S(^D) = 2. It is felt that reinvestigation of this 

photodissciation system is needed. 

We have carried out a study of the photodissociation dynamics of 

CS2 at 193 nm using a new high resolution molecular beam laser 

photofragment TOF mass spectrometer with rotatable beam source and 

movable detector. 
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Bqjerimental 

The experimental apparatus used in this study consists of the 

following major parts; (1) a rotatable nozzle beam generation system, 

(2) an excimer laser, and (3) a movable detection system. The detailed 

design considerations and constructions are described in the previous 

section. 

A continuous supersonic molecular beam is produced by applying CS2 

at a pressure of 150 torr through a 0.127 mm diameter stainless steel 

nozzle. The nozzle discharge chamber is punped by a 20" oil diffusion 

punp (Varian Model HS-20) and maintains at a pressure of < 1 x 10"^ Torr 

during normal operation. The collimation chamber, which has a 

reasonably large flow conductance and a pressure about an order of 

magnitude lower than that of nozzle discharge chamber, is punçed by a 

liquid nitrogen trapped 6" oil diffusion punp (Varian Model VHS-6). The 

scattering chamber, lAere the molecular beam is perpendicularly crossed 

with the laser beam and where the photofragmentation reaction takes 

place,- is pusçsed by a 10" oil diffusion pmm. A pressure of 10~® Torr 

is maintained in this chamber during the photofragmentation experiment. 

The angle of the rotatable molecular beam source ranges from -90 to +90 

degrees with respect to the detector axis and is set by a conçuter 

controlled stepping moter. 

A multigas excimer laser (Questek Model 2260) is used as the 

photofragmentation light source. The ArF laser beam is coincident with 

the rotational axis of the molecular beam source system, therefore it 

always perpendicularly intersects the molecular beam in the scattering 
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zone. A Suprasil planoconvex lens of 1 meter focal length is used to 

focus the laser beam to a size of 2 mm x 6 mm in the scattering zone for 

the laser photofragmentation experiments. In a typical experiment, the 

ArF laser is operated at a repetition rate of 100 Hz with pulse energy 

of 40 - 60 mJ/pulse. 

The fragment detection system is a bakable differentially punçed 

ultrahigh vacuum chamber mounted on a one-dimensional translations! rail 

stand. The translational motion of the detection system is achieved fay 

simply moving the chamber on the rail. This allows one to change the 

flight path length between 48.9 and 97.2 cm. The first differentially 

pimped section in the detection system is purcçed by a turbomolecular 

punç (Balzers TPU 330) with a punping speed of 330 1/s. The base 

pressure in this region is normally maintained at 10~® Torr. The second 

region, housing a quadrupole mass filter and a Daly ion detector, is 

pumped by a Cryo-Boostivac D-I combination punç (Ultek Model 224-0620) 

with a pumping speed of 150 1/s and a turbomolecular puiip (Balzers Model 

TPU 050) with a puaming speed of 50 1/s. The pressure in this section 

is maintained at 10~® Torr during normal operation. The innermost 

region of the detector chamber houses an electron bombardment ionizer 

(Extranuclear 041-1) and is puiroed by a Veeco 100 1/s noble gas ion puitç 

(Veeco Model PN-201). The base pressure in this innermost region is 

maintained at < 1 x 10"^^ Torr during normal operation. 

The data acquisition routine is initiated by a modulated pulse from 

a photodiode (TOP chopper vdieel experiment) or by a triggering pulse 

coming directly from the pulsed excimer laser (laser photofragmentation 
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TOP experiment). In the laser photofragmentation experiment only a very 

small fraction of the fragment molecules produced in the scattering zone 

can reach the ionizer. The ions formed in the ionizer are then selected 

by the mass filter and detected by the ion detector. The signal pulses 

from the photomultiplier are displayed by a ratemeter (EG&G ORTEC 449/2) 

and also parallel counted and stored in a 1024-channel multichannel 

scaler (MCS) vAich contains a Motorola 6809 microprocessor with 1024 

memory locations. When a TOP experiment is conçleted the data stored in 

the MCS are then transferred to a Digital LSI-11/23 conçuter for 

manipulations. The data manipulation tasks are achieved by using 

various Fortran programs including a HGRAPH subroutine for data 

plotting. 

For all TOF measurements there is always a delay between the time a 

neutral molecule reaches the ionizer and the time a pulse is counted by 

the detector.27 The delay is caused mostly by the time required for the 

ion to drift through the mass spectrometer. This ion drift time is 

approximately proportional to the square root of the ion mass. However, 

because of the extraction difficulties caused by the negative space 

charge of the electrons in the ionizer, a "memory effect" is expected. 

As a result, the true experimentally measured delay times are normally 

greater by a few microseconds than those predicted theoretically from 

the corresponding m/e  values and the ionizer conditions.Therefore, 

measurements of the ion drift times are necessary to correct the flight 

times of the molecules in the TOF experiments. A measurement of the ion 

drift delay time in the mass spectrometer has been done by pulsing the 



www.manaraa.com

183 

extractor of the ionizer and observing the display on the oscilloscope 

of the signal coming from the discriminator. 

In order that the interpretation of experimental data is 

meaningful, the laboratory TOF distribution must be converted into the 

c.m. translational energy distribution. The transformation involves 

considering a Newton diagram (velocity vector representation) ̂ ich 

requires information on the initial velocity of the parent molecules. 

Assume that the detector axis is the x axis, then for each TOF datum 

point, 

^LAB = 1 t 

Vy = Vlab • Sin (©Lfte) 

^x ~ ̂ LAB • ~ ̂ LAB 

V = + Vy^ ) 

where, Vy^ is the fragment laboratory velocity; 1 is the length of the 

flight path; t is the fragment flight time; 0^ is the laboratory 

angle; v^ is the x component of the fragment c.m. velocity; Vy is the y 

component of the fragment c.m. velocity; and is the initial 

velocity of the parent molecules; and v is the fragment c.m. velocity. 

The c.m. translational energy distribution of the fragments, P(Et), 

can be expressed as 

P(E^) ~ ®cm^ ~ 
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^ere, 9^) is the c.m. flux distribution of the fragments; 

f(v) is the c.m. velocity distribution of the fragments and n^^ is the 

signal counts measured in the laboratory. 

Results and Discussion 

In the CS2 photofragmentation experiment, Fischer Scientific 

analytical grade CS2 was used without further purification. The initial 

velocity of the CS2 molecules has been measured to be 4.6 x 10'® an/sec 

by the TOF chopper ;meel experiment. 

Figure 1 shows the TOF spectrum of CS fragments resulting from CS2 

photofragmentation by a pulsed ArF laser. The spectrum was obtained by 

accumulating TOF signals for about 1,000,000 laser shots at a molecular 

beam source angle of 10 degrees with respect to the detector axis and a 

fragment flight path length of 48.9 cm. It represents a signal to noise 

ratio greater than 10. The delay time of m/e = 44 ions in the detection 

system for the same operating conditions has been measured to be 53 

microseconds. This value is used for calibrating the fragment flight 

times in the TOF spectrum. 

The laboratory TOF distribution is transformed into c.m. recoil 

translational energy of the photofragments as shown in Figure 2. The 

curve clearly shows that a sharp rise at c.m. energy of 45.0 kcal/mol 

^ich corresponds to the formation of CS (v = 0) according to 

dissociation channel (1). The thermochemical limit of the vibrational 

excitation of this dissociation channel is v = 13. At c.m. 

translational energy lower than 18.6 kcal/mol, mixings occur in excited 
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photodissociation of CS2 at 193 nm. 
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Figure 2. Trantslational energy distribution of fragments. Hie two 

assignment trains show the fragment translational energies 

for the photodissociation channels CS2 —> + CS 

(X ̂ 1, V) and CS2 —> S(^D) + CS (X V). 
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states between CS2 > CS(v = 0-5) + S(^D) and CS2 > CS(v = 8-12) + 

S(3p). Therefore, a single TOP spectrum can only produce a lower bound 

of the channel branching ratio for S(^P)/S(^D). This is found by 

dividing the area between 18.6 and 45.0 kcal/ïool by the area between 0 

and 19.6 kcal/taol. In this analysis, a lower bound of the S(^P)/S(^D) 

ratio of 0.38 is obtained. 

For a conplete study of the branching ratio S(^P)/S(^D), 

information on the vibrational energy distribution and rotational energy 

distribution of the nascent CS fragment is needed. Domhofer et al.^^ 

have shown that an intense ArF laser can distort the observed 

vibrational energy distribution due to a subsequent photon absorption by 

the CS fragments, in addition, a fraction of CS(X v>5) can 

photodissociate into C(^P) and S(^P). This results in an 

underestimation of the branching ratio in the direct detection method^® 

and an ovrestimation of the branching ratio in the laser-induced 

fluorescence method.A more elegant experimental method must be 

developed in the future in order to precisely determine the S(^P)/S(^D) 

in CS2 photodissociation at 193 nm. 
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APPENDIX A. LASER MCS SYSTEM DESCRIPTION 

The LASER MCS (multichannel scaler) was designed by Mr. Harold 

Skank of Anses Laboratory Instrumentation Services Group to provide 

control and data acquisition capabilities for the molecular beam laser 

photofragment mass spectrometer. The system consists of a Motorola 6809 

microprocessor, functioning as the system central processor unit (CPU), 

the usual random access memory (RAM), sixteen kilobytes of control read

only memory (ROM), a teleprinter serial channel, and a number of special 

input-output (I/O) ports dedicated to the hardware required to control 

the experiment. The CPU runs a menu driven system, operating under a 

ROM based tasking system specifically designed for experiment support. 

LASER MCS Hardware 

The hardware of the LASER MCS consists of two separate chassis: 

(1) LASER MCS CONTROL and (2) LASER MCS MOTOR DRIVE. Since the 

inçlementation was developed about a local bus convention to simplify 

system extensions, the system hardware is modular with only the CPU 

requiring a specific bus slot dedicated to its use. The first chassis 

houses the LASER MCS CONTîlGL which contains the central decision making 

6809 microprocessor (the CPU), a number of bus slots, and many specific 

I/O ports. 

The specific I/O facilities in the LASER MCS system are described 

below: 
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I. Three triple sixteen-bit timer/counter boards used for: 

1. Phase-lock control of the chopper system (4 sixteen-bit 

sections). 

2. Variable modulo clock for angle motor step control 

(1 sixteen-bit section). 

3. Dual data counters for the Molecular Beam Timer and Gate system 

(2 sixteen-bit sections). 

4. Monitor timer for MCS operations (2 sixteen-bit sections). 

II. Five twenty-bit parallel interface boards used for: 

1. MCS data transfers (1 board). 

2. MCS control transfers (1 board). 

3. X-Y display of stored spectrum data (1 board). 

4. Beam source chamber motor control (1 board). 

5. Molecular Beam Timer and Gate control (2 bits of 1 board). 

III. One dual D/A (digital to analog converter) channel provides two 

channels of 12-bit resolution digital to analog conversion. 

IV. A two-board multi-channel scaler provides up to 4096 channels of 

16-bit data acquisition. In the present LASER MCS system the MCS 

uses only 1024 channels, and the advance from channel to channel is 

driven from the MCS time base. Special synchronization circuitry, 

driven fay an optical sensor or the laser, depending upon the mode 

selection, ensures that individual sweeps are started at the proper 

time. Control commands (accessible from software) permit transfer 

of stored data from the MCS to the host processor. This transfer 

is done in a destructive-read fashion, thereby providing the means 

of clearing the MCS data memory area. Stop commands are executed 
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only at the end of conçlete traces, so that only entire traces are 

recorded. In addition other special circuitry monitors the most 

significant data bit and provides a flag to the host processor when 

data has reached half-scale, permitting transfer to the host 

processor before data loss occurs. 

In the LASER MCS system the high speed data latches reduce the 

scaler dead time to approximately 17 nanoseconds per channel, while 

memory cycle timing considerations limit the channel dwell time to an 

approximate minimum of 300 nanoseconds. Fully synchronous counters are 

used to reduce the state transition time after a count pulse. These 

counters, along with their channel synchronization circuitry limit the 

maximum count-rate within a channel to approximately 25,000,000 c^mts 

per second. 

A second separate chassis houses the power supply for the motors 

and their sequencers and power amplifiers. The motor power supply is 

singly a 36 volt transformer driving a bridge rectifier and choke-input 

filter and provides approximately 30 volts at 25 ançs. 

Each of the motors is driven by an interpolated step sequencer that 

provides two orthogonal phases with 16 steps per cycle. The phases are 

designed to approximate sine and cosine drive signals to the motor drive 

ançlifiers. While this technique increases the power requirements, it 

provides enhanced resolution on the angle drive motor and reduce the 

vibration inherent to stepping motor drive systems. For the TOF wheel 

chopper motor (a hysteresis synchronous motor) this drive scheme 
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provides the means by vAiich the extremely broad drive range is achieved. 

In both cases the sequencer circuit drives a 4-phase power amplifier 

which provides a controlled current drive to the following motor. For 

the stepping motor driving the beam source chamber this serves to 

flatten the torque-speed characteristics and permits the motors to be 

driven at higher speeds. 

LnSER ses Software 

The software of the LASER MCS system is essentially a menu driven 

program called MENU09. MENU09 is written in PL/W Wiich is a block 

structured conputer language developed by WINTER CORPORATION, Lafayette, 

Indiana. The MENU09 permits the user to invoke calls to the various 

system tasks and also provides the serial I/O system utilities to 

facilitate operator communication with the system. 

The system is automatically initiated on power-on with MENU09 being 

the only active task. As a result, the available pronpts from the 

master menu (ÎK5VE LASE CHOP MBGT STOP PRIN) are typed out to the user. 

At each level in the menu system a menu entry may be selected by 

responding with one of the four letter commands listed by the current 

level menu. Upon the entry of the carriage return, the system 

progresses to the next deeper level of menu selections until the most 

recent entry corresponds to an executable task. Then control passes to 

the task, and the parameter entry and task execution starts. Should an 

incorrect keyboard sequence be entered, the current level menu will be 

printed again. A carriage return with no corresponding keyboard entry 
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will move back up the menu tree one level and permit selection of a 

different branch of responses. At the completion of any task, the 

current level menu is repeated for possible selection of another task. 

The menu elements in the LASER MCS system are as follows: 

I. MOVE — Master command to select movement of the molecular beam 

source chamber. Typing this command will summon a second level 

menu with the following available commands. 

1. SETA — Set angle registers. This executable task permits the 

operator to provide the proper initial angular information for a 

system cold start. Under normal operation, all further angle 

record keeping is automatic. 

2. READ — Read and print the contents of angle registers. This 

command permits operator query of present position of the 

molecular beam source chamber. 

3. SOUR — Move the molecular beam source chamber to an operator 

selected angle. Typing this command leads to a query "ANGLE?", 

to be followed by an angle entry by the operator. A carriage 

return with no numeric entry provides an escape from the task, 

while a numeric entry will start motion of the beam source 

chamber to the designated target angle. A "MOTION COMPLETE" 

message is issued at the end of angle motion and an "OUT OF 

RANGE" message is issued if the numeric input string is too 

long, or if it contains non-numeric characters. The current 

executable angular range has been set to be from -90 to +90 

degrees. While the beam source chamber is actually in motion 
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the system is disabled to other keyboard commands to prevent 

interference with the motor drive routines. 

II. LASE — An executable master menu command to permit entry to the 

LASER MCS data acquisition mode. In response to this command the 

system clears the data storage area for the MCS data in the laser 

photofragmentation experiment, then returns a request to select and 

enter the dwell time multiplier. (The dwell time per MCS channel 

is the product, 20 nanoseconds/channel times the multiplier. ) 

Following entry of the dwell time multiplier, the operator is asked 

to enter the time limit desired for the MCS run, then the 

experiment is started. In order that the X-Y display might provide 

a reliable indication of the data acquisition process, the contents 

of the MCS are added to the contents of the 6809 memory at 6 second 

intervals. If the contents of the MCS memory should reach 

half-scale in a shorter period, then the transfer is done at that 

time. In either case the transfer time is not included in the 

total data acquisition time, so that the operator specified 

experiment time entered above is the actual data collection time. 

III. CHOP — An executable master command to permit entry of control 

parameters to the time of flight (TOF) chopper wheel system. 

In response to this command the system clears the data storage area 

for the data in TOF chopper wheel experiment, then returns a 

chopper wheel speed query, permitting selection of chopper wheel 

rotational speed in increments of tenths of Hz. When the chopper 

wheel speed has been set, the system enters a wait state until the 

chopper phase-locked oscillator has stabilized at the specified 
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speed. Following the stabilization wait state, the operator is 

asked to enter the time limit desired for the chopper wheel run, 

and the TOF chopper v^eel experiment is started. In order that the 

X-Y display might provide a reliable indication of the data 

acquisition process, the contents of the MCS are added to the 

contents of the 6809 memory at 6 second intervals. If the contents 

of the MCS memory should reach half-scale in a shorter period, then 

the transfer is done at that time, and in either case the transfer 

time is not included in the total data acquisition time, so that 

the operator specified experiment time entered above is the actual 

data collection time. 

IV. MGBT — Executable master menu command to enter the data 

acquisition mode for the molecular beam gate and timer experiment. 

Upon receipt of this command, after first checking for another 

experiment already in progress, the system clears the display area 

of memory, and responds with a query for the initial beam source 

angle. Further queries request a step angle for the incrementing 

the source position and the number of steps desired for the 

experiment. Since the data collection time for each point is 

ueterxTiineu by the hardware setup on the KBG&T ( Molecular Besm Gate 

and Timer) module, the system prompts the operator to provide the 

necessary settings. As a matter of record keeping, the system 

further requests entry of the time setting, after v^ich the 

experiment is started. The system provides for appropriate angle 

motions, control of the MBG&T module, and displays both counter 

channels of MBG&T data versus angle increment until the experiment 
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is completed, or until it is terminated by a STOP command. At the 

present time this command is not needed for either the TOF chopper 

v^eel experiment or the laser photofragmentation experiment. 

V. STOP — Executable master menu command to terminate a currently 

running experiment. This command is different from the other menu 

commands in that v^ile it may be called from the ke^aoard like 

other commands, it is also routinely called from the operating 

system as the normal conpletion of an experiment. In either event 

it shuts down the currently operating experiment and provides 

closing status information concerning which experiment had been 

running and the elapsed experiment time in minutes. Then for the 

TOF chopper wheel experiment it returns the chopper vAieel 

rotational speed to 40 Hz. 

VI. PRIN — Executable master menu command to provide print out of the 

MCS experiment data. Upon recognition of this menu command the 

system responds with a query for the first channel number desired 

in the print out range. The operator response to the first channel 

query is followed by another query requesting the last MCS channel 

number in the range. Following the operator response to the second 

query, the channel output operation begins. The format for each 

line provides for print out of each decimal channel number ending 

in zero, followed by ten channels of data. This line format is 

continued until the range specified is satisfied. 
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APPENDIX B. CALCUIATim Œ MOLECULAR BEAM GENERATION SYSTEM 

The molecular beam generation system consists of three vacuum 

chambers: (1) nozzle discharge chamber, (2) collimation chamber, and (3) 

scattering chamber. The estimated punping speed of the 20" diffusion 

pump and the Halo baffle in the nozzle source chamber is about 

10,500 1/s. The collimation chamber is evacuated by a 6" diffusion punp 

with an estimated effective pumping speed of 950 1/s. The 10" diffusion 

punp enployed to punp the scattering chamber has an pumping speed of 

about 1,830 1/s. 

For a nozzle diameter of 0.005", Argon gas at a stagnation pressure 

of 760 Torr, and a nozzle temperature of 300 K, the mass flow (G) 

through the nozzle is 

G = 14.3 D2 P 

vmere, D = diameter of nozzle opening in centimeter = 0.0127 cm 

P = nozzle stagnation pressure in Torr = 760 Torr. 

Thus, G = 14.3 X (0.0127)2 x 760 

_ 1 r Torr liter , 
= "-'5 [ second 

The normal pressure in the nozzle discharge chamber is, therefore, 

^--ir 

1.75 [Torr liter/second] 
10,500 [liter/second] 

= 1.67 X 10-4 [Torr]. 
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The solid angle subtended by the 0.040" (0.102 cm) diameter skimmer 

is 

(4-)  (0.102)2 
SS = 

0.7622 

= 1,41 X 10"2 [sterad]. 

For an isentropic expansion, the number density on the beam eixis at the 

skimmer entrance is approximated by 

n_|. =1.13 X 10-5 G [ moleo^es ^ 
x2 cm3 

= 0.161 n (^)-2 

lAere, n = molecular density in the nozzle, 

in "molecules/cm^", 

X = distance from nozzle to skimmer, in "cm". 

At one atm and 300 K, the molecular density is 

n = 2.4 X 10^9 [molecules/cm^]. 

So that, 

ngjç = 0.161 X (2.4 X lO^^) x 

= 1.1 X 10^5 [molecules/cm^]. 

The root-mean-square velocity of argon at 300 K is 

VAr = SORT (-̂ ) 

= SQRT ( " n X 40 ) 
8 X 8.314 X 10^ X 300, 

= 4.0 X 10'^ [cnv/sec], 
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After the argon gas comes out of the nozzle, its velocity will reach a 

terminal speed v^ich is about 1.29 times that of the initial root-mean-

square velocity, depending upon the expansion conditions. 

Then, 

V^ = (4.0 X 104) X 1.29 

= 5.2 X 10^ [an/sec]. 

Thus, the beam flux (I) at skimmer entrance is 

^sk ~ "sk * Yat 

= (1.10 X 10L5) X (5.2 X 10^) 

= 5.7 X 10^^ [molecules/cm^ sec]. 

The number of atoms entering the collimation chamber is 

= (5.7 X 10L9) X (-|- X (0.102)2 )  

= 4.7 X 10^7 [molecules/sec] 

= 1.4 X 10~2 [Torr liter/sec]. 

Since the collimation chamber is evacuated at a pumping speed of 950 

liter/sec, the pressure in this region is maintained at 

^2 = 

= 1.5 X 10"S [liter/sec]= 

The solid angle subtended by the 0.060" (0.152 cm) diameter 

collimator is 

(-#-)(0.152)2  

= 1.2 X 10"^ [sterad]. 
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Then, the number density on the beam axis at collimator tip is 

approximated by 

n„ = 0.161 X (2.4 X IcA^) x 
3.9372 

= 4.1 x 10^3 [molecules/cm^]. 

Thus, the beam flux at the tip of collimator is 

^co ~ "co * ^Ar 

= (4.1 X 10l3) X (5.2 X 104) 

= 2.1 X lO^B [molecules/cm^ sec]. 

The number of atoms entering the scattering chamber is 

= (2.1 X I0I8) X (-|- X 0.152%) 

= 3.8 X lO^G [molecules/sec] 

= 1.2 X 10"3 [Torr 1/sec]. 

The punçing speed in the scattering chamber is 1830 1/sec, therefore, 

the pressure in the scattering chamber is 

P3 = (1.2 X 10-3) / 1830 

= 6.6 X lO""^ [Torr]. 

Finally, the number density on the beam axis at scattering center 

is approximated by 

ngç, = 0.161 X (2.4 X lO^S) x 

= 2.2 X 10^3 [molecules/cm^]. 
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APPENDIX C. CALCULATim ON NUMBER OF FRAŒNTS ARRIVING 

IN IONIZATION REGION 

A carbon disulfide (CS2) beam with a pressure of 150 Torr is used 

as the exairçle for this calculation. Following a calculation procedure 

similar to that in i^pendix B, one obtains a number of density of CS2 in 

the scattering zone of about 4.3 x 10^^ molecules/cm^. 

Assume that the laser beam is focused to 2mm x 6mm to match the 

molecular beam which has a cone-shaped spread with a diameter of 2 mm in 

the scattering center i Then, the scattering volume is approximately 

0.020 cm^ and 

ng^ = the number of CS2 molecules in the scattering zone 

= (4.3 X 10l2) X (0.020) 

=  8 .6  X l o lO .  

Assume that (1) the laser beam is perfectly intersected with the 

molecular beam, (2) all CS2 molecules arrived in the scattering zone are 

photodissociated, and (3) all product fragments are spherically 

distributed. Then, for the following instrumental parameters; 

A = acceptable area of ionizer (diameter = 0.125") 

- 0.075 cs?, 

1 = distance from scattering center to ionizer 

= 48.9 an. 
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the fraction of product fragments arriving in the ionizer, F, can 

calculated. 

F 
4N X 48.9^ 

= 2.6 X 10-6. 

Finally, one obtains number of product fragments arriving in the 

ionizer: 

Nfg = (8.6 X lolO) X (2.6 x lO"®) 

=  2 .2  X 105 .  
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APPENDIX D. LAB TO C.M. TRANSFORMATICN 

The results of photofragmentation time-of-flight experiments are 

normally reported in terms of relative differential cross sections 

^LAb(^'®LAB^ ® given range of laboratory velocity v and solid angle 

©y^. Experimental or laboratory cross-sections and angles are usually 

transformed into center-of-mass coordinates. The transformation is 

U"' 

v^ere lj^(u,0j^) is the center-of-mass cross section, v is the 

laboratory velocity and u is the center-of-mass velocity. Since an 

electron inpact ionizer is sensitive to number density and not flux, the 

lab signal is given by 

Flux = (Number density of molecules in beam) 

X (Velocity of molecules in beam) 

Thus, 

u"̂  

However, we measure this distribution as a function of time, not 

velocity, and since t = 1/v (1 is the flight path length), we have 
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9 

^LAL^^'^LAL^ " ("Ï ) * ( 

v3 

U2I 

Furthermore, it is more convenient to discuss the center-of-mass 

distribution in terms of energy rather than velocity, and since E ~ u^ 

= mu. 

Thus, l^{u,e^) = (imi)Icg^(E,8(^) 

and ( 2 )^cm(^'®cm) ~ ( ^^cm^®'®cm^* 
u'^l ul 

v3 
Also, nrjvp.(t,©rj.p.) ~ 

and 

12 
"LAB^^'®LAB^ ~ ( 3 )^cm(^cm'®cm) ' 

t-^u 

Since the flight path, 1, is constant, equation (5) becomes 

~ ( ^cm^ ̂ cm' ®cm^ 
ut'̂  



www.manaraa.com

208 

The equation (6) may be expressed as 

v^ere, t is the flight time. 
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APPENDIX E. OPERATIONS OF EXCIMER LASER 

The Questek model 2260 excimer laser is a multigas ultraviolet 

laser ̂ .ich puts out four intense single frequency laser lines, 

depending upon the fuel gas mixture. Since the laser is equipped with a 

microprocessor controlled unit, the operation is fairly sinçle. 

However, the coiipany has not supplied a complete operational manual 

although they have a "800" toll free number for answering questions and 

providing technical support. The purpose of this appendix section is to 

describe procedures for some essential operations and tests which are 

not conpleted or not included in the current operational manual. 

A. Procedure for normal operation; 

1. Set the GAS SELECT switch for the excimer emission line to be 

used. 

2. Set the INT/EXT TRIGGER switch to INT for internal trigger mode. 

3. Set the COMMAND CHARGE ON/OFF switch to Œ. 

4. Set the pCwisrlOK ON/OFF switch to Œ. 

5. Open cooling water valve and verify its flow. 

6. Close the beamstop at the laser output port. 

7. Turn on the main circuit breaker and key switch on the line 

power panel. 

8. Wait for 15 minutes until the countdown clock on the numerical 

display reads zero. 

9. Press and release the E\%CUATE key to evacuate the chamber. 

10. Open all valves in supply fuel gas lines. 
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11. Press and release the PURGE key. (May repeat this action). 

12. Press and release the AUTOFILL key to initiate the automatic gas 

filling sequence. 

13. Set pulse energy and repetition rate by pressing and releasing 

the PULSE ENERGY and REP RATE key. 

14. Press the green LASER ON switch to start the laser. 

B. Procedure for cleaning the laser cavity optics (output MgF2 coupler 

window and rear reflection MgF2/Al mirror); 

1. Evacuate the gas chamber and purge two times with helium 

(Buffer A) gas. 

2. Fill the gas chamber with Buffer A gas to 1000 mbar. 

3. Press and release the CODE key. 

4. Press and release the ENTER key. 

5. Type "30" on the numerical keypad. 

6. Carefully loosen the three holding screws on the front output 

window holder and remove the holder from the gas chamber wall. 

7. Remove the MgF2 window from the holder. 

8. Lay the window on the lens cleaning paper. 

S. Use optics polishing slush (mixture of Tin Oxide lens polishing 

powder and methanol) to polish the window. 

10. Remove the polishing material with small amount cf methanol. 

11. Examine the window surface. 

12. Repeat steps 9-11 if necessary. 

13. Put the window back to its holder. 

14. Mount the window holder on the gas chamber wall. 
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15. Follow steps 7-14 for the rear mirror. 

Procedure for aligning the output laser beam: 

1. Place a piece of thermal paper on the output coupler mirror 

holder mount. 

2. Slightly press the thermal paper against the three mounting 

screws to define the reference triangle. 

3. Fire the laser for one shot and inspect the burnt spot on the 

reference triangle. 

4. Turn the appropriate adjustment screws on the front and back of 

the gas chamber wall. 

5. Repeat steps 1-4 if necessary. 

Procedure for checking the control voltage from the high 

voltage DC power supply: 

1. Remove the front chassis panel. 

2. Remove the plastic cover on the driver board. 

3. Use an oscilloscope to measure the voltage level on TPl 

(Test Point 1) on the driver board. A value of 10 volts is 

equivalent to 32 kV of control voltage. 

Procedure for bypassing Error 90 (zero output) for some coirçonent 

tests: 

1. Press and release the CODE key. 

2. Type "7" on the numerical keypad and hit the ENTER key. 

3. Type "1284" on the numerical keypad and hit the ENTER key. 
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4. Type "0" on the numerical keypad and hit the ENTER key. 

Procedure for replacing vacuum pump l^ass solenoid valve and the 

connection hose to the halogen charcoal filter: 

1. Make sure the cooling water valve is closed and the main line 

power is off. 

2. Remove the top and back chassis panels of the laser. 

3. Short out the high voltage capacitor banks and the capacitors on 

the high voltage trigger circuit board by using a long 

screwdriver to make a contact with the laser chassis. 

4. Disconnect the electrical connectors to the high voltage trigger 

circuit board. 

5. Remove the high voltage trigger circuit board. 

6. Remove the Thyratron HV trigger cover panel. 

7. Remove the Mylar insulation sheet. 

8. Remove the two HV capacitor banks. 

9. Remove the Thyratron HV trigger unit. 

10. Loosen the hose clamps and remove the flexible hoses. 

11. Replace the solenoid valve. 

12. Reverse the sequence for reinstalling the conçonents. 

. Procedure for inspecting the failure of the secondary capacitors in 

the high voltage discharge assembly in the gas chamber: 

1. Evacuate the gas chamber and purge two times with helium. 

2. Fill the gas chamber with helium to 1700 mbar. 

3. Set repetition rate at 10 Hz. 
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4. Bypass the Error 90 using the Procedure E described above. 

5. Start the laser. 

6. Use a business card to check if any lasing occurs. (One should 

not see lasing phenomenon. ) 

7. Use a 1/2" thick plexiglas plate and carefully look through the 

output window to inspect the homogenity and the colors in the 

preionization units of the discharge region. (A purple color 

indicates nonnal operation whereas a yellowish color indicates 

a failure in the secondary capacitor.) 

H. Procedure for replacing the secondary capacitors in the high voltage 

discharge assembly and/or the set of nickel electrodes: 

1. Evacuate the gas chamber and purge two times with helium. 

2. Fill the gas chamber with helium to 1300 mbar. 

3. Follow steps 1-9 in Procedure F. 

4. Carefully remove the G-10 assembly unit. 

5. Inspect and replace the damaged capacitor and/or the nickel 

electrodes. 

6. Reverse the sequence for reinstalling the components. 

7. Follow the procedure for passivating the gas chamber. 

I. Procedure for passivating the gas chamber: 

1. Close cooling water valve. 

2. Evacuate the gas chamber and purge two times with helium. 

3. Fill the gas chamber with halogen gas (F2/He) to 700 mbar then 

with helium gas to a total pressure of 1700 mbar. 
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4. Set repetition rate at 1 Hz. 

5. Bypass the Error 90 using the Procedure E described above. 

6. Start the laser and observe the red light coining out of the 

output window of the laser cavity. (The red light is caused by 

the fluorescence of excited fluorine molecules.) 

7. Gradimtely increase up the repetition rate. 

8. Let this passivation proceed for at least one hour. (A complete 

passivation procedure will take at least 24 hours.) 

9. When the passivation is completed, evacuate the chamber and 

purge 2 times with helium. 
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APPENDIX F. COMPUTER PROGRAMS 

Many Fortran programs have been written in FORTRAN-77 language for 

manipulating TOP data and general computational purposes, but only two 

of the most useful ones are included in this appendix section. A useful 

graphics plotting program called HGRAPH has been installed in the LSI-

11/23 conçjuter system library. Moreover, a command file vAiich has the 

same filename with a filename extension of "com" has been created for 

linking the HGRAPH subroutine program to the fortran conçiler. 

Therefore, the data plotting tasks can be done by invoking the HGRAPH 

instructional commands with proper desired parameters in the main 

fortran program. 

All data stored in another file called A.DAT can be invoked by the 

OPEN instructional command and transferred to be stored in an array for 

later computations. However, a CLOSE instructional command must be 

included at the end of the data transferring task. Some inçortant 

experimental variables are requested on the conçuter terminal as the 

input data, so that the operator must enter the corresponding values 

according to the questions. All constant and variable names and 

meanings are explained in the comment statement "C" in the program, thus 

one can quickly understand the whole computation procedure. The results 

of coiïçiutations can be output on the graphic terminal screen, the line 

printer or plotter as desired. 

FLIGHT.FOR is used to plot the time of flight spectra as seen on 

the oscilloscope during the data acquisition periods. However, a slight 
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modification in the program is needed to correct the flight time of 

molecules due to the delay time that the ions spend in the mass 

spectrometer in both laser photofragmentation and chopper wheel TOP 

experiments. In addition, another calibration \shich relates to the 

wheel rotational direction in the chopper wheel experiment (described in 

the main text) must be taken into consideration. 

ENERGY.FOR is used to convert the laboratory TOF data to c.m. flux 

as a function of c.m. energy for the laser photofragmentation TOF 

experiments. When running this program, input onformation is requested 

concerning the channel dwell time, the ion drift time in the mass 

spectrometer, the fragment flight path, the laboratory angle between 

beam source and detection system axis, the parent beam initial velocity 

and the masses of the two product fragments. The results of this 

transformation are then presented as a plot of probability versus c.m. 

energy. 
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C FilenameiFLIGHT.FOR 
C FLIGHT.FOR im fortran program for plotting time of flight 
C spectra either for the time of flight chopper wheel experiments 
C or for the laser photofragmentation experiments. 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

C 
C BAXAVG ' average number of background channels for 
C background subtraction. 
C BAXSUM * sua of counts of some background channels. 
C BIG « maximum counts after subtracting average background counts. 
C DWELL * dwell time per channel in tlme-of-flight data, 
C in "microsecond per channel*. 
C IPEAX « channel number at maximum counts. 
C Yd) • intensity array. 
C T(I) « flioht time from scattering center to detector (array). 
C 
C 

REAL Y(1024), T(1024) 
BYTE DATEdl) 

C 
C Open an input data file called "A.DAT" and store in an array. 

0PEM(UNIT»22, NAME»'A.DAT', TYPE='OLD') 
READ122,*,E3JD«3100) (Yd), 1-1,1024) 

C 
C Smooth the curve 
C 
3100 DO 3500 I - 2 , 1023 

Yd) - (Yd-l) + 2. * Yd) • Yd+D) / 4. 
3500 CONTINUE 

DO 3700 I « 2 , 1023 
Yd) - (Y(I-l) + 2. * Yd) + Y(I+1)) / 4. 

3700 CONTINUE 
C 
C Enter today's date on the terminal. 

TYPE 400 
ACCEPT 100, DATE 

C Enter dwell time per channel (channel width) on the terminal. 
TYPE 410 
ACCEPT 110, DKELL 

C 
C Find the maximum signal 
C 

DO 6000 I » i , 1024 
ZFd .GE. 1023) CO TO 6000 
IF(¥d> .LE. BIG) GO XÛ bOÔÔ 
BIG • Yd) 
IPEAK - I 

6000 CONTINUE 
C 
C Calculate average background counts 
C 

BAKSUM » 0. 
DO 6500 I " 600 , 699 
BAKSUM = BAKSUM Yd) 

6500 CONTINUE 
BAXAVG > BAKSUM / (899. - 600. + 1.) 

C 
C Subtract background counts 
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DO 7000 I • 1 , 1024 
IF(I .CT. 1023) CO TO 6800 
7(1) • T(I) - BAKAVC 
CO TO 7000 

6800 7(1) « 0. 
7000 CONTIKUE 

BIG > BIG - BAKAVG 
C 
C NorBAlize the spectrua 
C 

DO 7500 I • 1 , 1024 
Tll) « I * DWELL 
7(1) • 7(1) / BIG 

7500 CONTINUE 
C 
C Output to terminal (logic device • 7) or line printer 
C (logic device « 6) 

KRITE(7,30) BIG, IPEAK 
KRITE(7,40) BAKAVG 

C 
30 FORMAT(FB.O, lOX, 17) 
40 F0RMAT(F9.0) 
100 FORMAT (HAD 
110 F0RMAT(F5.1) 
400 FORMAT(X, 'Enter today"» DATE in dd-mmn-yy format') 
410 FORMAT(X, 'Enter cha.nnelvidtti (DKEXL) in microseconds in F5.1 form 

*at' ) 
700 FORMAT(X, 'Date: ',11A1) 
710 FORMAT(X, 'The dwell time per MCS channel in TOF data is ',F5.1, 

*' microseconds' ) 
780 FORMAT(X, 'The peak is at channel number ', 15, '.') 
790 FORMAT(X, 'The averaged counts for background subtraction is ' 

*, F9.0, ' counts.') 
C 
C This section is to use HGRAPH subroutine program to plot out 
C Intensity (Y-azis) vs Flight time (X-azis). 
C Subroutine INIPLT sets up maximum size of the plot (10.25" z 7.25") 

CALL CHOICE!lUHIT) 
CALL INIPLT(lUNIT, 10.25, 7.25) 
CALL SCALE(0., 2062., -.1, 1.2) 
CALL AXIS(400., .3, 'Flight Time (microseconds)', 

F26, 2 ,  0, 'Intensity, 9 , 2, 1) 
CALL DASHLNtT, 7, 1024, 1, 0, 0, 0, 0) 
CALL IN1LGN(5.S, 7.5, 4., 5.5) 
CALL SRILGN('CS2, C C ', S, C, 0, C, 15 
CALL HRILGN('Laser 193nm', 11, 0, 0, 0, 1) 
CALL EKDLGN 
CALL ESDPLT 
CL0SEIUNIT«22) 
STOP 
END 
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C Filename: BîERGT.FOR 
C DraSGY.rOR ia a FORTRAN program for converting laboratory 
C tiae-of-flight data into center-of-aaas flux as a function 
C of center-of-aaas energy for laser photofragaentation 
G ti»e-of-flight asperiaents. 

C 
c ANCcm « angle between fragment beam and detector azis in c.a. 
C frame, in "degree". 
C ANClab • angle between nozzle beam axis and detector azis, 
C in "degree". 
C BAXAVC * averaged neaber of background channels for 
C background subtraction. 
C DRIFT = ion drift time at that particular mass In "microseconds". 
C DWELL • dwell time per channel In time-of-flight data, 
C in "microsecond per channel". 
C QJGYcm « kinetic energy of fragments in c.m. frame in "Kcal/mol". 
C FLUXcm • fragment fluz in c.a. frame in "(counts)(em) 
C (microsecond**!*". 
C PAIW • product flight path, in "centimeter". (4B.9cm) 
C RSKA5S " reduced mass of system. In "a.m.u.*. 
C VEubm > parent beam velocity obtained from time of flight 
C measurements, in "centimeter/second". 
C VZLlab * fragment beam velocity in "cm/s". 
C 
C 
c 

SEAL** MASSfa, MASSfb 
REAL*4 ï(1024). ENGYcm(1024), INTZNSdOZO 
BYTE DATE(ll) 

C Define constants for calculations and unit conversions. 
C Constant CI is the Avogadro's number. 
C Constant C2 is a anglular conversion factor from radian to degree. 
C Constant C3 is a energy conversion factor from erg to Kcal/mol. 

CI • 6.02204SEf23 
C2 • 57.29578 
C3 = 1.425££E-!-13 

C 
C Open an input data file called "A.DAT* and store in an array. 

OPEN(UNIT«22, SAKE»'A.OAT', TYPE"'OLD') 
READl22,*,£3tLl-3100i llilt, 1=1,1024) 

C Smooth the curve 
C 
3100 DO 3500 I • 2 c 1023 

tCI) » (tlI-1) * 2. A ?CI5 4- Y(Z+1)! / 4. 
3500 CONTINUE 

DO 3700 I » 2 , 1023 
Yd) • (Y(l-l) * 2. A 1115 * Y(I+1)) / 4. 

3700 CONTINUE 
C 
£ Enter today's date cn the tersin&l. 

TYPE 400 
ACCEPT 100, DATE 

C Enter dwell time per channel (channel width) on the terminal. 
TYPE 410 
ACCEPT 110, DWELL 

C Enter ion drift time in microseconde. 
TYPE 420 
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ACCEPT 120, DRIFT 
C Enter fragment flight path length on the terminal. 

TYPE 430 
ACCEPT 130, PATH 

C Enter lah angle (parent beam vs. detector axis) on the terminal. 
TÏPE 440 
ACCEPT 140, ANClab 

C Enter parent initial beam velocity In 'ea/8" on thé teminal. 
TYPE 450 
ACCEPT 150, VELbm 

C Enter masses of fragments A and B in a.m.u. (atomic mast unit) 
C on the terminal; fragment A <* detected fragment. 

TYPE 460 
ACCEPT 160, HXSSfa, MASSfb 

C 
C Calculate reduced mass of fregsents 

RDMASS « HASSfa * MASSfb / (MASSfa * MASSfb) 
C 
C This section is to substract background counts from detected 
C signal counts 
C Make sure the this range has not contained signal counts. 
C 

BAKSUM - 0. 
DO 4000 I • 600 , 699 
BAKSUM « BAJCSUM • Y(I) 

4000 CONTINUE 
BAKAVG s BAKSUM / (899. - 600. t- 1.) 
DO 4500 1*1, 1023 
LIMIT « I 
DATA = Yd) - BAKAVG 
TIKE » I * IWSLL - DRIFT 
IF (TIME .CT. 0.) THOÎ 

VELlab « (PATH / TIME) * l.OE+6 
VElcmY « VELlab * SIN(ANGlab/C2) 
VELCBX - VELlab * C0S(ANClab/C2) - VELbm 
ANGcm « ATAN2 ( VELcmY ,VELcmX) * C2 
VELcm » S2RT(VELcaX**2 • VELcaY**2) 
FLUXcm • (TIKE**3) * VELcm * DATA * l.OE+6 
IFtANGca .GI. SO.) GO TO 4501 
IF (FLUXcm .GT. BIG) THEN 

BIG • FLUXcm 
IPEAX =1-1 
ENDIF 

EKDIF 
4500 CQSTIKUE 
4501 HRITE(6,*) 
C 
C Output to terminal (logic device = 7) sr line printer 
C (logic device « 6) 

KRITE(6,700) DATE 
HRITE(6,710) DHEXL 
*RITE(6,720) DRIFT 
HRITE(6.730) PATH 
NRITZ(6,740) AHGlab 
KRITE(6,750> VELbs 
HRITE(6,760) BCHASS 
HRITEt6,770) VELcm 
KRITE(6,780) IPEAX 
WRITE{&,7S0) BAXAVG 
KRITE(6,800) LIMIT 
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NRITE(6,900) 
KRITE(6,910) 

This ftsction is to calculate center-of-aass angle, 
energy, and fluz. 

00 5000 X > 1 , 1024 
IF (I .LT. 1023) DATA = ?(I) - SRXAVG 
TIME • I * DWELL - DRIFT 
IF (TIKE .CT. 0.) THEN 

VELlab • IPXTH / TIME) * l.CE+6 
VELcaY « VELlab * SIN(ANClab/C2) 
VELcaX * VELlab * CDS(ANGlab/C2) - VELba 
ANGca • ATAN2(VELcaY .VELcaX) * C2 
VELca • SQRr(VELcaX**2 + VELcaY**2) 
VEL • VELca * (MASSfa + MASSfi) / KASSfb 
ENGYca(I) « .5 * C3 * (RDMASS/Cl) * VEL**2 
FLUXca « (TIME**3) * VELca * DÂIÂ * i.OE+ô 

ELSE 
TIME = 0. 
ANGca >0. 
ZNGYcmd) = C. 
FLUXca « 0. 

smiF 
INTENS(I) • FLUXca / BIG 
IF(I .CE. 90 .AND. I .LE. 120) HR1TE(6,920) I-l, ?(I), 
DATA, TIME, ANGca, EMGYca(I), FLUXca, INTENSlI) 
CONTINUE 

FORMAT; HAD 
FORMATtF4.1) 
FORMATCFS.l) 
F0RMATIF6.2) 
F0RMAT(F6.2) 
FORMAT(F9.2) 
FORMAT(2F6.2) 

FORMATCX, 
FORMAT (X, 
at') 
FORMAT (X, 
FORMATCX, 
FORMAT (X, 
FORMAT!X, 
FORMAT(X, 
foraat') 

'Enter today"s DATE in dd-aaa-yy foraat') 
'Enter channelvldth (DMELL) in microseconds in F4.1 fora 

'Enter ion drift time in aicro»ecôndi in FS.l fsrsit'J 
'Enter flight PATH in ca using F6.2 foraat') 
'Biter lab angle (ANGlab) in degrees using F6.2 foraat') 
'Enter parent beaa velocity in ca/s using F9.2 foraat') 
'Enter masses of fragments A and B in a.a.u. using 2r&.2 

FORMATCX, 'Date: ',11A1) 
FORMATCX, 'The dwell time per MCS channel in TOF data is ',F4.1, 
' microseconds') 
FORMATCX, 'The Ion drift tiae i* F5.1, ' microseconds.') 
FORMATCX, 'The oroduct flight path is ', F6.2, ' ca. ') 
FORMATCX, 'The lab angle is F6.2, ' degrees.') 
FORMATCX, 'The parent beaa velocity is ', E9.3, * ea/s.') 
FORMATCX, 'The reduced aass of fragments is ', F6.2, ' a.a.u.') 
FORMATCX, 'The fragment cm velocity is ' , 23.3, ' ca/s.') 
FORMATCX, 'The peak is at channel nuaber '« IS, *.') 
FORMATCX, 'The averaged counts for background subtraction is ' 
, F9.0, ' counts.') 
FORMATCX, 'The cm. angle is >90 degrees after channel nisber' 
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* , 15, 
900 FORMAT(X, 'Channel', TIO, 'Signal', T20, 'Data', T30 

* , 'Flight Time', T45, 'c.•.Angle', T60, 'C.B .Energy' 
* , T75, ' C . B . Flux', T90, 'Intensity') 

910 FORMAT(X, 'Number', TIO, '(counts)', T20, '(counts)T30 
A , '(usees)', T45, "(degrees)', T60, '(Kcal/mol)' 
& , T75, '{ct.e=.usec2)', T90, '(arb. unit)') 

920 FORMAT(X, 35, TIO, F'.O, T20, F7.0, T30, FS.2, T44, 213.S, T59 
* ,E13.6, Ï74, E13.6, TB9, £13.6) 

C 
C This section is to use HGRAPH subroutine program to plot out 
C c.a. flux (Y-axis) as a function of c.a. energy (X-axis). 
C Subroutine INIFLT sets up maximum size of the plot (10.25" x 7.25") 

CALL CHOICEdUNIT) 
CALL INIPLT(IUNIT,10.25,7.25) 
CALL SCALE(0., 62., 0., 1.2) 
CALL i«CI5(iO., .2, 'Center-of-=as5 Energy (Kcal/Mole)' 

* , 33, 2, 0, 'Probability', 11, 2, 1) 
CALL DASHLN(SMG7ca, INTENS, 247, 1, 0, 0, 0, 0) 
CALL INILGNtS.S, 7.5, 4., 5.5) 
CALL HR1LGN('CS2, 0 C ', 9, 0, 0, 0, 1) 
CALL KRILGNC'Laser 193na', II, 0, 0, 0, 1) 
CALL E3IDLCK 
CALL DTOPLT 
CL0SE<UNIT«22) 
STOP 
END 
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GENERAL SUMMARY 

The energetics and dissociation dynamics of the (028^)2*, 

and ( c-CgHg ) 2''' COTçlexes have been studied by photoionization of their 

corresponding neutral van der Waals clusters. The AE's for C3H5+ and 

from (C2H^)2 measured in an ethylene beam, v^ich mainly consists 

of C2H4 and (C2H4)2, are 10.21+0.04 eV (1214+5 À ) and 10.05+0.04 eV 

(1234+5 Â ), respectively. This suggests that the barriers for the 

reverse reactions of the ion-molecule reactions + C2H4 are 

negligible. From the observed lE's of (02^4)2 (3.84+0.04 eV) and 

(10.505+0.004 eV) and the estimated binding energy of (€28^)2 (Ô.02 eV), 

the bond dissociation energy for is calculated to be 15.8+1 

kcal/mol. 

The IE's of (CgH^)] and (€28^)4 are determined to be 9.465+0.035 eV 

(1310+5A) and 9.287+0.034 eV (1335+5 Â), respectively. Using the known 

IE's of (€284)%, n = 2, 3, and 4, and the estimated binding energies of 

^^2^4^2'*'2^4 (C2H4)3«C2H4, the bond dissociation energies for 

(^2^4)2^' ̂2^4 (C2H4)3"^» C2H4 are calculated to be 9.2+1 and 4.6+1 

kcal/inol, respectively. 

The measured IE of CgHg is S.73S+0.003 eV and that of c-CgHg is 

9.721+0.011 eV. Using the ionization energies (IE) of (035^)2 

(9.33+0.04 eV) and (c-C3Hg)2 (9.61+0.04 eV) determined in this study, 

the calculation of the bond dissociation energies for 03!!̂ '̂ ' ̂ 3"6 c-

C3Kg'''. c-C3Kg gives 0.43 and 0.14 eV, respectively. 
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By conparing the observed product channels in the unimolecular 

decompositions of (C3Hg)2''' and (c-C3Hg)2"'", one can conclude 

that the and (c-C3Hg)2''' loose conçlexes rearrange to 

similar stable CgKi_2"'" ions prior to fragmenting. 

In the laser photofragmentation study of CS2 at 193nm, the TOF data 

of the CS fragments gives a result that the lower bound of the branching 

ratio of the two photodissociation channels, S(%)/S(^D), is 0.38. The 

new MB-LP-TOF machine can be readily modified to combine the TOF 

technique with other techniques such as laser-induced fluorescence, 

multiphoton ionization, and VUV photoionization for more advanced 

molecular photodissociation dynamics studies. This machine shows 

promises for outstanding molecular kinetics and dynamics research in 

Professor Ng's group at Iowa State University in the near future. 
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